Dr. Babasaheb Ambedkar Technological University (Established a University of Technology in the State of Maharashtra) (Under Maharashtra Act No. XXIX of 2014)

P.O. Lonere, Dist. Raigad, Pin 402 103,

Maharashtra Telephone and Fax. 02140 - 275142 www.dbatu.ac.in

www.dbatu.ac.in

CURRICULUM UNDER GRADUATE PROGRAMME FOR B. TECH

ARTIFICIAL INTELLIGENCE & DATA SCIENCE

WITH EFFECT FROM THE ACADEMIC YEAR SY: 2021-2022 TY: 2022-2023 B.Tech:2023-24

Course Structure for Second Year B. Tech in Artificial Intelligence & Data Science

Semester III (Term 3)										
Course Catego	Course	Course Title	Te So	Teaching Scheme		Evaluation Scheme				
ry	Coue		L	Τ	P	CA	MSE	ESE	Total	Credit
BSC7	BTBS301	Engineering Mathematics-III	3	1	-	20	20	60	100	4
PCC1	BTAIC302	An Introduction to Artificial Intelligence	3	1	-	20	20	60	100	4
PCC2	BTAIC303	Data Structure and Algorithm using Python	3	1	-	20	20	60	100	4
ESC11	BTAIES304	Computer Architecture & Operating Systems	3	-	-	20	20	60	100	3
ESC12	BTAIES305	Digital Logic & Signal Processing	3	-	-	20	20	60	100	3
LC1	BTAIL306	Artificial Intelligence Lab & Data Structure and Algorithm using Python Lab	-	-	4	60	-	40	100	2
Seminar	BTAIS307	Seminar-I	-	-	4	60	-	40	100	2
Internsh ip	BTES211P	Internship –I (Evaluation)	-	-	-	-	-	-	-	Audit
			15	3	8	220	100	380	700	22

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Course Structure for Second Year B. Tech in Artificial Intelligence & Data Science

Semester IV (Term 4)										
Course Category	Course	Course Course Title		Teaching Scheme		Evaluation Scheme				
Code			L	Τ	P	CA	MSE	ESE	Total	Credit
PCC3	BTAIC401	Data Analysis	3	1	-	20	20	60	100	4
PCC4	BTAIC402	Database ManagementSystem	3	1	-	20	20	60	100	4
HSSM C3	BTHM403	Basic Human Rights	3	-	-	20	20	60	100	3
BSC8	BTBS404	Probability Theory and Random Processes	3	-	-	20	20	60	100	3
	BTAIPE405	Professional ElectiveCourses –I								
	BTAIPE405A	1. Numerical Methods andComputer Programming								
PEC-1	BTAIPE405B	2. Image Processing &Computer Vision	3	1	-	20	20	60	100	4
	BTAIPE405C	3. Internet of Things &Embedded System								
	BTAIPE405D	4. Programming in JAVA								
LC2	BTAIL406	Data Analysis Lab and Database ManagementSystem Lab	-	-	4	60	-	40	100	2
Seminar	BTAIS407	Seminar - II	-	-	4	60	-	40	100	2
Internship	BTAIP408	Field Training / Internship / Industrial Training - II	-	-	-	-	-	-	-	Audit to be evaluate
										in V semester
			15	3	8	220	100	380	700	22

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Semester –III Seminar-I							
BTAIS307	SEMINAR- I	Seminar	0L-0T-4P	2 Credits			

Guidelines for Seminar

The students shall study in group of two members (or individual) on some special topic beyond the scope of the syllabus under the subjects of Artificial Intelligence, Data Science, Electronics Engineering and Computer Science Engineering or inter discipline branch from current literature, by referring the current technical journal or reference books, under the guidance of the teacher. The students shall prepare his report and deliver talk on the topic for other students of his class in the presence of his guide and internal examiner. The student is permitted to use audio-visual aids or any other such teaching aids.

Continues Assessment:

The Continues Assessment for this head will consists of the report written in a technical reporting manner and presentation of the talk on the subject and will be assessed by the internal examiner appointed by the HOD of concern department of the institution.

Semester –III Internship - I

BTES211P	Field Training / Internship / Industrial	Internship	Audit
	Training		

Guidelines for Internships

Guidelines for Field Training / Internship / Industrial Training Industrial Training:

- 1. To apply for a suitable Industrial Training, submit an application form to respective Organization concerned one semester before the Industrial Training Programmed commences.
- 2. Student can also apply through online platforms such as Internshala for industrial training.
- 3. Submit one copy of the offer letter for the Industrial Training to the Head of the department or Faculty coordinator (Industrial Training).
- 4. To complete the Industrial Training process within the specified time based on the Industrial Training Programme schedule.
- 5. Assessment within the Industrial Training context aims to evaluate the student's work quality and appropriateness to the field of study with reference to the learning outcomes of the Industrial Training Programme.
- 6. Evaluation of the students' performance should be done in the next upcoming semester.
- 7. Those students who fails, they can also complete online certification courses which are available at free of cost on various MOOC platforms.

Data Analysis

BTAIC401	Data Analysis		PCC3	3L - 1T - 0P	4 Credits	
Teaching Scheme		Examin	ation Scl	heme		
Lecture: 3 hrs./week		Continuous Assessment : 20 Marks				
Tutorial : 1 hr./week Mid Semester Exam:20 Marks						
	End Semester Exam: 60 Marks (Duration 03 hrs.)					

Pre-Requisites: Basics of Linear Algebra, Introduction, Probability and Statistics.

Course Objectives:

After completion of the course, students will learn:-

- 1. To obtain a Comprehensive knowledge of various tools and techniques for Data transformation and visualization
- 2. To learn the probability and probabilistic models of data science
- 3. To learn the basic statistics and testing hypothesis for specific problems
- 4. To learn about the prediction models
- 5. To give a hands-on experience with real-world data analysis

Course Outcomes:

On completion of this course, the student should be able to

CO1	Apply preprocessing techniques to convert raw data so as to enable further analysis
CO2	Apply exploratory data analysis and create insightful visualizations to identify patterns
CO3	Understand how to derive the probability density function of transformations of random variables and use these techniques to generate data from various distributions
CO4	Understand the statistical foundations of data science and analyze the degree of certainty of predictions using statistical test and models
CO5	Introduce machine learning algorithms for prediction and to derive insights

Course Contents:

Unit 1: Statistical data and Concepts

The statistical Methods, Misuse, Misinterpretation and bias, Sampling and sampling size, Data preparation and cleaning, Missing data and data errors, Exploratory Data Analysis, Statistical error, Statistical Modeling, Computational Statistics, Inference, Bias, Cofounding, Hypothesis testing, Types of error, Statistical significance, Confidence Interval, Power and robustness, Degrees of freedom, Non parametric analysis.

Unit 2: Descriptive Statistics

Counts and specific values, Measure of central tendency, Measure of spread, Measure of distribution shape, Statistical indices, Moments, Key functions, Measures of complexity and model selection.

[07 Hours]

Unit 3: Data transformation and standardization

Box-Cox and power transforms, Freeman-Tukey (square root and arcsine) transforms, Log and Exponential transforms, Logit transforms, Normal transform.

Unit 4: Classical Tests and Contingency Tables[7 Hours]

Goodness of fit tests: Anderson-Darling, Chi-square test, Kolmogorov-Smirnov, Ryan-Joiner, Shapiro-Wilk, Jarque-Bera, Lilliefors;

Z- test: test of single mean, standard deviation known, Test of the difference between two means, standard deviation known, test for proportions, P;

T-tests: test of single mean, standard deviation not known, Test of the difference between two means, standard deviation not known, test of regression coefficients;

Unit 5: Analysis of Variance and Covariance

Variance test: Chi square test of single variable, F-test of two variables, test of homogeneity; Wilcoxon rank-sum/Mann-Whitney U test; Sign test.

Contingency Tables: Chi-square contingency table test, G contingency table test, Fisher's exact test, Measures of association, McNemar's test.

ANOVA: Single factor or one way ANOVA, Two factor or two-way and higher-way ANOVA, MANOVA, ANCOVA; Non Parametric ANOVA: Kruskal Wallis ANOVA, Friedam ANOVA test, Mood's median

Text Books

- 1. Dr. Michael J de Smith, Statistical Analysis Handbook, A Comprehensive guide to statistical concepts methods and tools, The Winchelsea Press, Drumlin Security Ltd, Edinburgh 2018 edition. <u>https://www.statsref.com/HTML/index.html</u>
- 2. Douglas C. Montgomery, George C. Runger, Applied Statistics and Probability for Engineers, Sixth Edition, Wiley, 2013
- Dr.J.Ravichandran, Probability And Statistics For Engineers, First Edition, Wiley, 2010 Scientists

Reference Books

- 1. Jure Leskovek, Anand Rajaraman and Jeffrey Ullman. Mining of Massive Datasets. v2.1, Cambridge University Press. 2014. (free online)
- Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. ISBN 0262018020. 2013.
- 3. Foster Provost and Tom Fawcett. Data Science for Business: What You Need to Know about Data Mining and Data-analytic Thinking. ISBN 1449361323. 2013.
- 4. Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk From The Frontline. O'Reilly. 2014.

[07 Hours]

[08 Hours]

Database Management System

BTAIC402	Database Management System	PCC4	3L-1T-0P	4 Credits

Teaching Scheme	Examination Scheme	
Lecture: 3 hrs./week	Continuous Assessment : 20 Marks	
Tutorial : 1 hr./week	Mid Semester Exam:20 Marks	
	End Semester Exam: 60 Marks (Duration 03 hrs.)	

Pre-Requisites: None

Course Objectives:

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

1. Fundamentals of Database Management Systems and types of DBMS used in data analysis

2. Understand various ways to organize, maintain and retrieve - efficiently, and effectively – information from different DBMS

3. Design and maintenance of the database systems

4. Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing

Course Outcomes:

On completion of the course, students will be able to:

CO1	Master the basic concepts of relational DBMS and its types.
CO2	Perform various types of operations on relational databases using DDL, DML, DCL
	in SQL
CO3	Understand the concept of how non-relational databases differ from relational
	databases from a practical perspective.
CO4	Master the basic concepts of designing NoSQL database management system.
CO5	Able to Identify what type of NoSQL database to implement based on business
	requirements

Course Contents:

Unit 1: Introduction to Databases

[06 Hours]

Introduction to Data and Database, Significance of Database Management System, Various Types of DBMS- relational & non-relational, Data Independence - The Three Levels Of Architecture - The External Level - Conceptual Level - Internal Level - Client/Server Architecture- System Structure, Instance and schema

Unit 2: Relational Database Management System

Data Models & Types, ER to Relational Mapping, Structure Of Relational Databases, Creation and Manipulation of Database using Basic SQL(DDL, DML,DCL,TCL) Normalization –Anomalies- Functional Dependency, Normal forms- 1NF, 2NF, 3NF, Boyce -Codd Normal Form

Unit 3: Non-Relational Database Management System

NOSQL Systems-Introduction to NoSQL, Disadvantages of NoSQL technology, NOSQL Systems, weakness of RDBMS, CAP theorem, Types of NoSQL Databases, Key-value database-Key values database, More elements of key values database, Properties of Key-value store, Redis implementation (Basic CRUD operation)

Unit 4: Columnar & Document Databases

Columnar Databases with Apache Cassandra- Characteristics of a columnar database, Concepts of columnar databases, Cassandra Introduction and its use-cases, implement a columnar database using Apache Cassandra

Introduction to Document databases, Document databases with MongoDB - Implement a document database with MongoDB

Unit 5: Graph and Future databases

Graph Databases - Graph databases, graph traversal and graph problems, graph data structures edge list, adjacency matrix, properties of graph model.

Implementation and systems - Reliable, maintainable and scalable, Different information systems, NEO4J implementation (Basic CRUD operation), Introduction to Advance Databases- PostgreSQL

Text Books

1. Abraham Silberchatz, Henry K.Forth, Sudharshan, "Database system Concepts" – (6th edition), McGraw Hill, 2010.

2. Guy Harrison, "Next Generation Databases", Apress, 2015.

3. Eric Redmond, Jim R Wilson, "Seven Databases in Seven Weeks", LLC. 2012

Reference Books

1. K. Pakhira, "Database Management System", Phi Learning Pvt. Ltd., 2012

2. MongoDB: The Definitive Guide, 2nd Edition, Powerful and Scalable Data Storage, By Kristina Chodorow, Publisher: O'Reilly Media

3. MongoDB Basics - EelDavid Hows, Peter Membrey, coPlugge, Publisher Apress -

Ebook(free) https://it-ebooks.info/book/4527/

[07 Hours]

[8 Hours]

[8 Hours]

[07 Hours] gy, NOSQL

Basic Human Rights

BTHM403	Basic Human Rights		HSSMC3	3L- 0T -0P	3 Credits			
Teres C	1	F						
Teaching So	Teaching Scheme Examination Scheme							
Lecture: 3 hrs./week Continu			tinuous Assessment : 20 Marks					
	Mid Semester Exam:20 Marks							
	End Semester Exam: 60 Marks (Duration 03 hrs.)							

Pre-Requisites: None

Course Objectives:

1. To train the young minds facing the challenges of the pluralistic society and the rising conflicts and tensions in the name of particularistic loyalties to caste, religion, region and culture.

2. To give knowledge of the major "signposts" in the historical development of human rights, the range of contemporary declarations, conventions, and covenants.

3. To enable them to understand the basic concepts of human rights (including also discrimination, equality, etc.), the relationship between individual, group, and national rights.

4. To develop sympathy in their minds for those who are denied rights.

5. To make the students aware of their rights as well as duties to the nation

Course Outcomes:

On completion of the course, students will be able to:

CO1	Students will be able to understand the history of human rights.
CO2	Students will learn to respect others caste, religion, region and culture.
CO3	Students will be aware of their rights as Indian citizen.
CO4	Students will be able to understand the importance of groups and communities in the society
001	Statemes will be use to understand the importance of groups and communities in the society.
CO5	Students will be able to realize the philosophical and cultural basis and historical perspectives
005	Statems will be usie to realize the philosophical and earthful busis and instorted perspectives
	of human rights
	or numan rights.

Course Contents:

UNIT 1: The Basic Concepts:

[08 Hours]

Individual, group, civil society, state, equality, justice. Human Values, Human rights and Human Duties: - Origin, Contribution of American bill of rights, French revolution. Declaration of independence, Rights of citizen, Rights of working and exploited people.

UNIT 2 Fundamental rights and economic programme:

Society, religion, culture, and their inter relationship. Impact of social structure on human behavior, Social Structure and Social Problems: - Social and communal conflicts and social harmony, rural poverty, unemployment, bonded labor.

UNIT 3: Migrant workers:

Migrant workers and human rights violations, human rights of mentally and physically challenged. State, Individual liberty, Freedom and democracy. NGOs and human rights in India: - Land, Water, Forest issues.

UNIT 4: Human rights in Indian constitution and law

i) The constitution of India: Preamble ii) Fundamental rights. iii) Directive principles of state policy. iv) Fundamental duties. v) Some other provisions.

UNIT 5: Universal declaration:

Universal declaration of human rights and provisions of India. Constitution and law. National human rights commission and state human rights commission

Text / Reference Books

1. Shastry, T. S. N., India and Human rights: Reflections, Concept Publishing Company India (P Ltd.), 2005

2. Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives(Law in India), Oxford India

[07 Hours]

[07 Hours]

[07 Hours]

Semester –IV Probability Theory and Random Processes

BTBS404	Probability Theory and Random Processes		BSC8	3L- 0T -0P	3 Credits		
Teaching S	Examination Scheme						
Lecture: 31	Continuous Assessment : 20 Marks						
		Mid Semester Exam:20 Marks					
	End Semester Exam: 60 Marks (Duration 03 hrs.)						

Pre-Requisites: None

Course Objectives:

1. To develop basic of statistics, probability and random variables.

2. The primary objective of this course is to provide mathematical background and sufficient experience so that the student can read, write, and understand sentences in the language of probability theory, as well as solve probabilistic problems in engineering and applied science.

Course Outcomes:

On completion of the course, students will be able to:

CO1	Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon
CO2	Understand the basic concepts of one and two dimensional random variables and apply in
	engineering applications
CO3	Apply the concept random processes in engineering disciplines
CO4	Understand and apply the concept of correlation and spectral densities
CO5	The students will have an exposure of various distribution functions and help in acquiring
	skills in handling situations involving more than one variable. Able to analyze the response
	of random inputs to linear time invariant systems

Course Contents:

UNIT 1: Probability Theory

Definition of probability: classical, empirical and axiomatic approach of probability, Addition theorem of probability, Multiplication theorem of probability, Bayes' theorem of inverse probability, Properties of probabilities with proofs, Examples.

UNIT 2: Random Variable and Mathematical Expectation

Random variables, Probability distributions, Probability mass function, Probability density function, Mathematical expectation, Join and marginal probability distributions, Properties of expectation and variance with proofs. Theoretical Probability Distributions : Binomial distribution, Poisson distribution, Normal distribution, Fitting of binomial distributions, Properties of binomial, Poisson and normal distributions, Relation between binomial and normal distributions, Relation between Poisson and normal distributions, Importance of normal distribution, Examples.

[07 Hours]

UNIT 3: Correlation

Introduction, Types of correlation, Correlation and causation, Methods of studying correlation, Karl Pearson's correlation coefficient, Spearman's rank correlation, Coefficient, Properties of Karl Pearson's correlation coefficient and Spearman's rank correlation coefficient, Probable errors.

UNIT 4: Linear Regression Analysis

Introduction, Linear and non-linear regression, Lines of regression, Derivation of regression lines of y on x and x on y, Angle between the regression lines, Coefficients of regression, Theorems on regression coefficient, Properties of regression coefficient.

UNIT 5: Estimation and Hypothesis

Estimation, Large Sample Estimation of a Population Mean, Small Sample Estimation of a Population Mean, Large Sample Estimation of a Population Proportion, Sample Size Considerations, Testing Hypotheses, The Elements of Hypothesis Testing, Large Sample Tests for a Population Mean, The Observed Significance of a Test, Small Sample Tests for a Population Mean, Large Sample Tests for a Population Proportion.

Text Books

1. S. C. Gupta, Fundamentals of Statistics, Himalaya Publishing House, 7th Revied and Enlarged Edition, 2016.

Reference Books

- 1. 1. G. V. Kumbhojkar, Probability and Random Processes, C. Jamnadas and Co., 14th Edition, 2010.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 3. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi, 2010.
- 4. G. Haribaskaran, Probability, Queuing Theory and Reliability Engineering, Laxmi Publications, 2nd Edition, 2009.
- 5. Murray Spiegel, John Schiller, R. ALU Srinivasan, Probability and Statistics, Schaum's Outlines,4th Edition, 2013.
- 6. Kishor S. Trivedi, Probability, Statistics with Reliability, Queuing and Computer ScienceApplications, Wiley India Pvt. Ltd, 2nd Edition, 2001.
- 7. Vijay K. Rohatgi, A. K. Md. Ehsanes Saleh, An Introduction to Probability And Statistics, Wiley Publication, 2nd Edition, 2001.
- 8. Roxy Peck, Chris Olsen, Jay Devore, Introduction to Statistics and Data Analysis, Third Edition,Thomson Books/Cole.
- 9. Ronald Walpole; Raymond Myers; Sharon Myers; Keying Ye, Probability & statistics forengineers & scientists, 9th edition, Prentice Hall.

[07 Hours]

[07 Hours]

BTAIPE405A	Numerical Methods Computer Programm	and ning	PEC1	3L- 1T -0P	4 Credits
Teaching Scheme		Examination Scheme			
Lecture: 3 hrs./week		Continuous Assessment : 20 Marks			
Tutorial : 1 hr./week		Mid Semester Exam:20 Marks			
		End Semes	ter Exam	: 60 Marks (Durat	tion 03 hrs.)

Numerical Methods and Computer Programming

Pre-Requisites: None

Course Objectives:

1. To prepare students for successful career in industries, for Post Graduate programmes and to work in research institutes.

2. To understand different numerical techniques used for solving algebraic and transcendental equations.

3. To understand numerical methods to solve a system of linear equations.

4. To understand numerical integration and differentiation techniques.

5. To understand various difference operators and interpolation techniques.

6. To understand object-oriented programming fundamentals and features.

7. To mold students professionally by course contents and sufficient problem solving and programming exercises and to acquaint them with different types of numerical techniques and programming concepts.

Course Outcomes:

On completion of the course, students will be able to:

CO1	Able to solve algebraic and transcendental equations by using numerical techniques and will be able to compare different numerical techniques used for this purpose and also will be able to choose a proper one as per the requirement of the problem
CO2	Able to solve a system of linear equations with any number of variables using different direct
	and iterative numerical techniques
CO3	Understand the concept of interpolation, finite difference operators and their relations, and
	can apply different interpolation techniques on equi-spaced or non equi-spaced data values
CO4	Prepare them to solve Integration and Differentiation
CO5	Understand application of the NMCP course in many engineering core subjects like signal processing, digital communication, numerical techniques in electromagnetics etc.

Course Contents:

UNIT 1: Introduction to Computational Methods and Errors:

[07 Hours]

Computational Methods: General principles of computational techniques, Introduction, common ideas and concepts of computational methods, various computational techniques.

Errors: Types and sources of errors, Concept in error estimation, Error propagation, Error due to floating point, Representation of errors, Elementary uses of series in calculation of errors.

UNIT 2: Solution of Transcendental / Polynomial Equations and System of Linear Equation: [07 Hours]

Solution of Transcendental / Polynomial Equations: Finding root of polynomial equations deploying computational methods such as Bisection, Regula-falsi, Newton-Raphson, Seccant, Successive approximation. System of linear equation: Solving linear equations deploying computational methods such as Gauss elimination, Gauss Jordan, Partial pivoting, Matrix triangularisation (LU decomposition), Cholesky, Gauss Seidel and Jacobi methods.

UNIT 3: Interpolation and Polynomial Approximation:

Least square approximation, Orthogonal polynomials Chebyshev polynomials, Finite difference operator and their relations, Forward, backward, central and divided difference, Newton's forward divided difference, Backward difference interpolation, Sterling interpolation, Lagrange sinterpolation polynomials, Spline interpolation, Least square approximation.

UNIT 4: Numerical Integration and Differentiation

Numerical Integration: Methods based on interpolation such as Trapezoidal rule, Simsons 1/3 and 3/8 rules. Numerical differentiation: Euler's method, Modified Euler's method, Taylor's series, Runge Kutta 2ndand 4th order, Stability analysis of above methods.

UNIT 5: Object Oriented Programming:

Software Evaluation, Object oriented programming paradigm, Basic concepts of object oriented programming, Benefits of OOP, Object oriented languages, Applications of OOP Beginning with C++: Structure of C++ program, Creating the source file, Compiling & linking, Basic data types, User defined data types, Symbolic constants, Declaration of variables, Dynamic initialization of variables, Reference variables, Operators in C++, Scope resolution operator, Type cast operator. Functions in C++: Function prototyping, Inline functions, Function overloading, Friend and virtual functions. Classes and Objects: Specifying a class, Defining member functions, C++ program with class, Arrays within a class, Memory allocation for objects, Constructors, Multiple constructor in class, Dynamic initialization of objects, Dynamic constructor, Destructors.

Note: OOPS hands-on should cover under Tutorial slots.

Text / Reference Books

1. S. S. Sastry, "Introductory Methods of Numerical Analysis", PHI, 1990, 3rdedition.

2. V. Rajaraman, "Computer Oriented Numerical Methods, PHI, New Delhi", 2000, 3rdEdition.

3. E. V. Krishnamurthy, and Sen S. K., "Numerical Algorithm: Computations in Science and Engg", Affiliated East West, New Delhi, 1996.

4. D. Ravichandran, "Programming with C++", TMH

5. E. Balagurusamy, "Object-Oriented Programming with C++", TMH, New Delhi, 2001.2ndEdition

6. YeshwantKanetkar, "Let us C++, BPB Pub.", Delhi, 2002,4thEdition.

- 7. StroupstrupBjarne, "C++ Programming Language", Addison Wesley, 1997, 3rdEdition.
- 8. Horton, "Beginning C++: The Complete Language", Shroff Pub., Navi Mumbai, 1998.

[07 Hours]

[07 Hours]

Semester –IV Image Processing and Computer Vision

BTAIPE405B	Image Processing and	PEC1	3L-1T-0P	4 Credits
	Computer Vision			

Teaching Scheme	Examination Scheme
Lecture: 3 hrs./week	Continuous Assessment : 20 Marks
Tutorial : 1 hr./week	Mid Semester Exam:20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs.)

Prerequisites: Digital Signal Processing

Course Objectives:

- 1. To let the students learn the fundamental principles on the aspects of interdisciplinary research including acquiring, processing, analyzing, understanding and utilizing high-dimensional visual data from the real world;
- 2. To equip the students with the knowledge of how to develop artificial intelligent systems which automate tasks that the human visual system can do;
- 3. To guide the students to understand the relevant state of art technologies and gain experience throughout a variety of case studies.

Course Outcomes:

On completion of the course, students will be able to:

CO1	To implement fundamental image processing techniques required for computer
	vision
CO2	Understand Image formation process
CO3	To perform morphological operations on image.
CO4	Extract features form Images and do analysis of Images
CO5	To develop applications using computer vision techniques

Course Contents:

Unit 1: Introduction to Digital Image Processing

Motivation & Perspective, Applications, Types of images, image file formats, Fundamentals Steps in Image Processing, Components of Image Processing System, Image digitization, Some basic relationships, Distance Measures between pixels, Image basic operation, Special Operations.

Unit 2: Image Enhancement and Transformation

Image Enhancement: Introduction, Methods, Basic Intensity Transformation: Image Negatives, Log transformation, Power law Transformation, piecewise linear transformation functions, Histogram processing, Histogram Equalization and Matching.

Basics of Spatial Filters, 2D Convolution & 2D Correlation, Smoothening (LPF) (Linear: Box, Gaussian & Non Linear: Median) and Sharpening (HPF): Laplacian operators, Unsharp Masking and Highboost Filtering, Combining Spatial Enhancement Methods.

Image Transforms: Discrete Fourier transform (DFT): Definition and properties, FFT, DCT.

[07 Hours]

[08 Hours]

Unit 3: Morphological operations

Introduction, erosion, dilation, opening, closing, Hit or Miss, boundary extraction, hole filling, connected components, the convex hull, thinning, thickening, skeletonization, and pruning.

Unit 4: Segmentation and Feature Extraction

Segmentation: Fundamentals; Point, Line and Edge Detection; Basics of edge detection: Image gradient and operators, Thresholding: Intensity Thresholding, Global thresholding, Segmentation by region growing, region splitting and merging.

Feature Extraction: Boundary Preprocessing: Boundary Following (Tracing), Chain Codes (freeman & slope), Polygonal approximation, Signature, Boundary description: Shape number, Fourier Descriptor, Statistical Moments, Region Feature Descriptors: Topological feature, Texture.

Unit 5: Pattern Recognition

Pattern and pattern classes, pattern classification by prototype matching (Minimum-Distance Classifier & using correlation for 2-D prototype matching), matching by structural prototype. Introduction to Bayes statistical classifiers, Introduction to Neural Network and Deep Learning.

Note: Hands-on practice of Image Processing using openCV should cover under Tutorial slots.

Text Books:

1. Computer Vision - A modern approach, by D. Forsyth and J. Ponce, Prentice Hall Robot Vision, by B. K. P. Horn, McGraw-Hill.

2. Introductory Techniques for 3D Computer Vision, by E. Trucco and A. Verri, Publisher: Prentice Hall.

3. R. C. Gonzalez, R. E. Woods. Digital Image Processing. Addison Wesley Longman, Inc., 1992.

4. Dhananjay K. Theckedath, Image Processing using MATLAB codes, Nandu Printers and Publishers Pvt. Ltd, Third edition.

Reference Books:

- 1. D. H. Ballard, C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, 1982.
- 2. Richard Szeliski, Computer Vision: Algorithms and Applications (CVAA). Springer, 2010
- 3. Image Processing, Analysis, and Machine Vision. Sonka, Hlavac, and Boyle. Thomson.

5. Simon J. D. Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012

6. Mark Nixon and Alberto S. Aquado, Feature Extraction & Image Processing for Computer Vision, Third Edition, Academic Press, 2012.

[06 Hours]

[08 Hours]

Internet of Things & Embedded System

BTAIPE405C	Internet of Things & Embedded	PEC1	3L-1T-0P	4 Credits
	System			

Teaching Scheme	Examination Scheme
Lecture: 3 hrs./week	Continuous Assessment : 20 Marks
Tutorial : 1 hr./week	Mid Semester Exam:20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs.)

Prerequisites: Basics if microprocessor, microcontroller, C language

Course Objectives:

- 1. To get the understanding of the concepts of Internet of Things
- 2. To enable the students to build IoT applications.
- 3. To understand the various protocols in IoT and Networking.
- 4. To develop the essential programming skill required

Course Outcomes:

On completion of the course, students will be able to:

CO1	The use of concepts of IoT and its areas.
CO2	Understand the basics of C and NodeMCU
CO3	Understand the basics of Python & Raspberry Pi
CO4	Interacting with Web Services and IoT protocol
CO5	Apply the IoT in various applications.

Course Contents:

Unit-1: Introduction to IoT

[07 Hours]

Definition, characteristics of IoT, logical design of IoT, IoT communication models, IoT communication APIs: REST, Websocket, IoT Enabling Technologies: Wireless sensor networks, Cloud computing, Big data analytics, communication protocols, Embedded systems, IoT vs M2M.

Unit-2: Introduction to C and Node Mcu

C: Introduction, Data types, variable, operator, branches, loops, functions, Debugging and Optimization of C programs.

NodeMCU: 8266 Wi-Fimodule, hardware and pin diagram, Interface with Arduino IDE. Interfacing of analog and digital sensors.

Unit-3: Introduction to Python and Raspberry Pi

Python: Python IDE, Data types, variable, operator, branches, loops, functions, List, Dictionary, Writing to a File, Reading from a File, handling exceptions.

Raspberry Pi: Models of Raspberry pi, R Pi 3 hardware, GPIO pins, operating system for R pi3, Basic of Linux commands, configuring R pi3, Interfacing of Digital and Analog sensors.

Unit-4: Interacting with Web Services

Configuring NodeMCU to connecting to server, NodeMCU interfacing with web services, configuring R pi 3 Wi-Fi and Ethernet, publishing and subscribing data from web using R pi 3, interfacing R Pi 3 with twitter and whatsapp.

Unit-5: IoT Protocols

UART, Wi-Fi, Ethernet, Bluetooth Low Energy (BLE), Message Queue Telemetry Transport (MQTT), Extensible Messaging and Presence Protocol (XMPP), Data Distribution Service (DDS), Advanced Message Queuing Protocol (AMQP).

Note: Hands-on practice of Internet of Things should cover under Tutorial slots.

Text Books:

- 1. Get Started With ESP8266 Programming NodeMCU Using Arduino, Up skill Learning.
- 2. Internet of Things with Raspberry Pi 3, ManeeshRao, pack
- 3. Internet of Things with ESP8266, Marco Schwartz
- 4. Internet of Things with Arduino Cookbook, Marco Schwartz

Reference Books:

- 1. Internet of Things: A Hands-On Approach- Arsheep Bahga, Vijay Madisetti
- 2. Raspberry Pi Cookbook for Python Programmers by Tim Cox
- 3. Learning Internet of Things, Peter Waher

[08 Hours]

[07 Hours]

Programming in JAVA

BTAIPE405D	Programming in JAVA	PEC1	3L-1T-0P	4 Credits

Teaching Scheme	Examination Scheme
Lecture: 3 hrs./week	Continuous Assessment : 20 Marks
Tutorial : 1 hr./week	Mid Semester Exam:20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs.)

Pre-Requisites: Basics of programming languages and Concepts of Object Oriented Programming languages.

Course Objectives:

After completion of the course, the students will be able to:

- 1. Apply object oriented features to real time entities.
- 2. Handle exceptions & implement multithreaded programs.
- 3. Implement database programming.
- 4. Design & implement GUI with event handling
- 5. Develop I/O & networking programs.

Course Outcomes:

On completion of the course, students will be able to:

CO1	To understand basics of JAVA
CO2	To use Packages & interfaces
CO3	To apply Exception Handling & Multithreaded Programming
CO4	To acquire Java Database Connectivity
CO5	To recognize Applet, Event Handling and AWT

Course Contents:

Unit 1: Introduction, Packages & interfaces

Features of Java, Java Virtual Machine, Byte Code, JIT Compiler, Class fundamentals, Declaring objects, Nested and Inner Classes, Introducing Methods, Constructors, Garbage Collection, Overloading Methods, Using Objects as Parameters, Returning Objects, Access Control, Understanding static & final keyword, Inheritance Basics, Using Super, Method

Wrapper classes, Using Command-Line Arguments. Packages: Defining a Package, Finding Packages and CLASSPATH, A Short Package Example, Access Protection, Importing Packages, Study of java.lang & java.util packages, Interfaces: Defining an Interface, Implementing Interfaces, Variables in Interfaces, Extending Interfaces, Multiple Inheritance.

Overriding, Abstract Classes, Using final keyword with inheritance, Arrays, Vectors, Strings,

[8 Hours]

Unit 2: Exception Handling & Multithreaded Programming

Exception handling fundamentals, Exception Types, Using try-catch, Multiple try-catch clauses, Nested try statements, throw, throws, finally, Built-in Exceptions, creating your own exception subclasses, The Java Thread Model, The Main Thread, Creating a Thread, Creating Multiple Threads, Using isAlive() and join(), Thread Priorities, synchronization, Suspending, Resuming, and Stopping Threads

Unit 3: Applet, Event Handling and AWT

Applet: Applet Basics, An Applet Skeleton, Simple Applet Display Methods, Using the Status, Window, The HTML APPLET Tag, Passing Parameters to Applets, Event Handling: The Delegation Event Model, Event Classes, Sources of Events, Event, Listener Interfaces, Handling Mouse and Keyboard Events, Adapter Classes, Introduction to AWT, AWT classes, Window, Creating a Frame Window in an Applet, Working with Graphics.

Unit 4: Input /Output & Networking

Input /Output: I/O Basics, Reading Console Input, Writing Console Output, The PrintWriter Class, Reading and Writing Files, The Stream Classes, The Byte Streams, The Character Streams, Object Serialization & deserialization, Networking: Networking Basics, The Networking Classes and Interfaces, TCP/IP Client, Sockets, TCP/IP Server Sockets, Datagrams

Unit 5: Java Database Connectivity

Introduction, Types of JDBC Drivers, Driver interface & DriverManager class, Connection Interface, Statement Interface, PreparedStatement, ResultSet, JDBC Program for executing Statements & processing ResultSet, Using PreparedStatement.

Note: Hands-on practice of Programming in Java should cover under Tutorial slots.

Text / Reference Books:

- 1. Herbert Schildt, The Complete Reference- Java2, (Seventh Edition), Tata Mc Graw Hill.
- 2. Steven Holzner, Java 2 Black Book, Dream Tech Press.
- 3. Deitel & Deitel, Java: How to Program, PHI.
- 4. Bert Bates, Kathy Sierra, Head First Java, O'Reilly Media, Inc.
- 5. E Balagurusamy, Programming with Java, Tata Mc Graw Hill.

[07 Hours]

[07 Hours]

[07 Hours]

Data Analysis Lab and Database Management System Lab

BTAIL406	Data Analysis Lab and Da Management System	LC2	0L-0T-4P	2 Credits		
Teaching Sch	Examination Scheme					
Practical: 04 hrs./week		Continuous Assessment 1: 30 Marks				
		Continuous Assessment 2: 30 Marks				
		End Semester Examination: 40 Marks				

Data Analysis Lab

List of practicals:

- 1. Installing R and R Studio
- 2. Data types, mathematical operators and functions in R.
- 3. Vectors, Factors, Lists, Matrix, Data Frames in R.
- 4. Measurement of Central Tendency Mean, Median and Mode.
- 5. Measurement of Variation Range, IQR and Standard Deviation.
- 6. Descriptive Statistics Using psych Package.
- 7. One & two Sample z Test Using R
- 8. One & two Sample t Test Using R
- 9. Goodness of Fit Test Using R
- 10. Contingency Table Using R
- 11. Analysis of Variance (ANOVA) Using R
- 12. Central Limit Theorem Demonstration Using R
- 13. R Functions for Normal Distribution rnorm, pnorm, qnorm and dnorm
- 14. R Functions for Binomial Distribution rbinom, pbinom, qbinom and dbinom
- 15. R Functions for Poisson Distribution rpois, ppois, qpois and dpois

Database Management System Lab

List of practical:

1. Draw E-R diagram and convert entities and relationships to relation table for a college database.

- 2. Perform the following:
 - a) Viewing all databases,
 - b) Creating a Database,
 - c) Viewing all Tables in a Database,
 - d) Creating Tables (With and Without Constraints),
 - e) Inserting/Updating/Deleting Records in a Table,
 - 3. Perform the following:
 - a) Altering a Table,
 - b) Dropping/Truncating/Renaming Tables,
 - c) Backing up / restoring a Database.
 - 4. For a given set of relation schemes, create tables and perform the following
 - a) Simple Queries,
 - b) Simple Queries with Aggregate functions,
 - c) Queries with Aggregate functions (group by and having clause),
 - 5. Perform queries with Date functions and String Functions
 - 6. Perform queries with Math Functions, Join Queries- Inner Join, Outer Join and Subqueries- With IN clause, With EXISTS clause
 - 7. Implement a columnar database using Apache Cassandra
 - 8. Implement a document database with MongoDB
 - 9. Design and Implement any 5 query using MongoDB
 - 10. Write a case study for various types of NoSQL databases.

Note:

- 1. Lab should be in scope of hands of experience and practice related program must
- 2. Add case study and Live project experience if any related contents

Semester –IV Seminar-II

BTAIS407	SEMINAR-II	Seminar	0L-0T-4P	2 Credits
----------	------------	---------	----------	-----------

Guidelines for Seminar

The students shall study in group of two members (or individual) on some special topic beyond the scope of the syllabus under the subjects of Artificial Intelligence, Data Science, Electronics Engineering and Computer Science Engineering or inter discipline branch from current literature, by referring the current technical journal or reference books, under the guidance of the teacher. The students shall prepare his report and deliver talk on the topic for other students of his class in the presence of his guide and internal examiner. The student is permitted to use audio-visual aids or any other such teaching aids.

Continues Assessment:

The Continues Assessment for this head will consists of the report written in a technical reporting manner and presentation of the talk on the subject and will be assessed by the internal examiner appointed by the HOD of concern department of the institution.

Semester –IV Internship - II

BTAIP408	Field Training / Internship / Industrial	Internship	Audit
	Training		

Guidelines for Internships

Guidelines for Field Training / Internship / Industrial Training Industrial Training:

- 1. To apply for a suitable Industrial Training, submit an application form to respective Organization concerned one semester before the Industrial Training Programmed commences.
- 2. Student can also apply through online platforms such as Internshala for industrial training.
- 3. Submit one copy of the offer letter for the Industrial Training to the Head of the department or Faculty coordinator (Industrial Training).
- 4. To complete the Industrial Training process within the specified time based on the Industrial Training Programme schedule.
- 5. Assessment within the Industrial Training context aims to evaluate the student's work quality and appropriateness to the field of study with reference to the learning outcomes of the Industrial Training Programme.
- 6. Evaluation of the students' performance should be done in the next upcoming semester.
- 7. Those students who fails, they can also complete online certification courses which are available at free of cost on various MOOC platforms.

Sr No	Name of Subject as per Curriculum	Course Code	Semeste r	SWAYAM/ NPTEL Course And Web Link	Name of Institute offering course	Relev ance %	Duration of Course
1	Engineering Mathematics -III	BTBS301	Ш	Linear Algebra https://nptel.ac.in/courses/111/106/111106051/	IIT, Madras	90%	12 weeks
2	An Introduction	BTAIC302	Ш	Artificial Intelligence : Search Methods For Problem solving	IIT Madras	90%	12 weeks
2	to Artificial Intelligence	Diffics02		An Introduction to Artificial Intelligence	IIT Delhi	90%	12 weeks
3	Data Structure and Algorithm using Python	BTAIC303	Ш	Programming, Data Structures And Algorithms Using Python https://onlinecourses.nptel.ac.in/noc21_cs67/previe w	Chennai Mathematical Institute	90%	8 week
4	Computer Architecture & Operating System	BTAIC304	Ш	Computer architecture and organization https://onlinecourses.nptel.ac.in/noc21_cs61/previe w	IIT KHARAGPU R	100 %	12Week s
5	Digital Logic	BTESC305	Ш	Principles Of Signals And Systems https://nptel.ac.in/courses/108/104/108104100/	IIT KANPUR	60%	12Week s
5	Processing	DIESC305	ш	Digital Signal Processing https://nptel.ac.in/courses/117/102/117102060/	IIT Delhi	60%	12Week s
6	Data Analysis	BTAI401	IV	Data Science for Engineers https://onlinecourses.nptel.ac.in/noc21_cs69/previe w	IIT Madras	60%	8 week
7	Database Management System	BTAI402	IV	Database Management System https://onlinecourses.nptel.ac.in/noc19_cs46/previe w	IIT Kharagpur	50%	8 week
8	Basic Human Rights	BTHM403	IV	https://nptel.ac.in/courses/109/104/109104068/	IIT KANPUR	50%	8 week
9	Probability Theory and Random Processes	BTBS404	IV	Introduction to Probability Theory and Stochastic Processes https://onlinecourses.nptel.ac.in/noc21_ma66/previ ew	IIT Delhi	90%	12 weeks
10	Numerical Methods and Computer Programmin g	BTSE405A	IV	Numerical methods and programing https://nptel.ac.in/courses/122/106/122106033/	IIT Madras	70%	12 week
11	Image Processing & Computer Vision	BTSE405B	IV	Computer Vision and Image Processing - Fundamentals and Applications https://onlinecourses.nptel.ac.in/noc21_ee23/previ ew	IIT Guwahati	80%	12 week
12	Internet of Things &	BTSE405C	IV	Introduction To Internet Of Things https://nptel.ac.in/courses/106/105/106105166/	IIT Kharagpur	70%	12 Weeks
12	Embedded System	B13E403C	IV	Design for Internet of things https://nptel.ac.in/courses/108/108/108108098/	IISc Banglore	40%	8Weeks
13	Programmin g In Java		IV	https://onlinecourses.nptel.ac.in/noc19_cs84/previe w	IIT Kharagpur	100 %	12 Weeks

COURSE CURRICULUM MAPPING WITH MOOC PLATFORM NPTEL

COURSE CURRICULUM MAPPING WITH MOOC PLATFORM COURSERA

Sr. No	Name of Subject as per Curriculu m	Cours e Code	Semes ter	Coursera Course And Web Link	Name of Institute offering course	Relev ance %	Durati on of Cours e
1	Engineeri ng Mathemat ics- III	BTBS3 01	III	Mathematics for Machine Learning: Linear Algebra	Imperial College Landon	25%	5 week
2	An Introducti on to Artificial Intelligenc e	BTAIC 302	III	AI For Everyone	DeepLearnin g.AI	50%	4 week
3	Programm ing, Data Structure and Algorithm using Python	BTAIC 303	III	Python Data Structures https://www.coursera.org/learn/pyt hon-data	University of Michigan	70%	7 weeks
4	Computer Architectu re& Operating System	BTAIC 304	III	Computer Architecture	Princeton University, US	25	4 Weeks
6	Data Analysis	BTAI4 01	IV	Statistics with R Specialization	Duke University	50%	5 Weeks
7	Database Managem ent System	BTAI4 02	IV	Database Management Essentials https://www.coursera.org/learn/dat abase-management	University of Colorado	40%	4 weeks
9	Probabilit y Theory and Random Processes	BTBS4 04	IV	Probability Theory, Statistics and Exploratory Data Analysis	National Research University Higher School of Economics	80	6 Weeks
11	Image Processin g & Computer Vision	BTSE4 05B	IV	 Fundamentals of Digital Image and Video Processing Computer Vision Basics 	 1) Northwest ern University 2) University at Buffalo The State University of New York 	1)25 2)25	1)4 Weeks 2)4 Weeks
12	Internet of Things & Embedded System	BTSE4 05C	IV	Hands-on Internet of Things Specialization(4 courses included in it)	University of Illinois at Urbana- Champaign	70	4 week per course
13	Programm ing in JAVA	BTSE4 05D	IV	Core Java Specialization https://www.coursera.org/specializ ations/core-java#courses	Learn Quest	70%	6 week

Sr. No	Name of Subject as per Curriculum	Course Code	Se me ster	Edx Course And Web Link	Name of Institute offering course	Relev ance %	Durati on of Cours e
1	An Introduction to Artificial Intelligence	BTAI C302	Ш	Artificial Intelligence (AI)	Colambia University	80%	12 Week
2	Data Structure and	BTAI C303	III	1) Foundations of Data Structures	1) IIT Bombay	1) 70%	1) 6 Weeks
	Python			2) Algorithms and Data Structures	2) UCSan Diego	2) 60%	2) 4 Weeks
3	Computer Architecture&	BTAI C204	III	1. Computer Organization	1. MITx	1. 20%	10 W 1
	Operating System			2. Computer Architecture	2. MITx	20%	WCCKS
4	Data Analysis	01	IV	StaStatistics and Data	MITx	60%	1 Year
5	Database Management System	BTAI4 02	IV	Databases: SQL	Stanford Online	50	8 Weeks
6	Probability Theory and Random Processes	BTBS 404	IV	Introduction to Probability	Harvard University	50	8 Weeks
7	Image Processing & Computer Vision			Image Processing and Analysis for Life Scientists	EPFLx	50	7 Weeks
8	Internet of Things & Embedded System	BTSE4 05B	IV	Design for Internet of things https://nptel.ac.in/courses/108/ 108/108108098/	IISc Banglore	40	8Week s
				IoT: from hardware to practice	ITMOx University	40	17 Weeks
	Programming in JAVA	BTSE4 05D	IV	Introduction to Object- Oriented Programming with Java II: Object-Oriented Programming and Algorithms https://www.edx.org/course/in troduction-to-java- programming-ii-object- oriented-programming	Georgia Institute of Technolog y	100 %	6 week
9	Programming in JAVA	BTSE4 05D	IV	Introduction to Object- Oriented Programming with Java III: Exceptions, Data Structures, Recursion, and GUIs https://www.edx.org/course/in troduction-to-java- programming-iii-interfaces- polymorphism-and- complexity			6 week
	Programming in JAVA	BTSE4 05D	IV	Introduction to Object- Oriented Programming with Java I: Foundations and Syntax Basics https://www.edx.org/course/in troduction-to-java- programming-i-foundations- and-syntax-basics			6 week

COURSE CURRICULUM MAPPING WITH MOOC PLATFORM Edx