Dr. Babasaheb Ambedkar Technological University (Established a University of Technology in the State of Maharashtra) (Under Maharashtra Act No. XXIX of 2014)

P.O. Lonere, Dist. Raigad, Pin 402 103,

Maharashtra Telephone and Fax. 02140 - 275142 www.dbatu.ac.in

www.dbatu.ac.in



# CURRICULUM UNDER GRADUATE PROGRAMME FOR B. TECH

**ARTIFICIAL INTELLIGENCE & DATA SCIENCE** 

WITH EFFECT FROM THE ACADEMIC YEAR SY: 2021-2022 TY: 2022-2023 B.Tech:2023-24



| Semester V (Term 5) |            |                                                                                            |    |       |    |      |       |        |       |        |
|---------------------|------------|--------------------------------------------------------------------------------------------|----|-------|----|------|-------|--------|-------|--------|
| C                   | Course     |                                                                                            | T  | eachi | ng |      |       | Evalua | ation |        |
| Course              | Code       | <b>Course Title</b>                                                                        | S  | chem  | e  | Sche | eme   |        |       |        |
| Category            | Coue       |                                                                                            | L  | Т     | Р  | CA   | MSE   | ESE    | Total | Credit |
| PCC5                | BTAIC501   | Computer Network and<br>Cloud Computing                                                    | 3  | 1     | -  | 20   | 20    | 60     | 100   | 4      |
| PCC6                | BTAIC502   | Machine Learning                                                                           | 3  | -     | -  | 20   | 20    | 60     | 100   | 3      |
|                     | BTAIHM503  | Humanities and Social<br>Sciences including<br>Management Elective<br>Course (HSSMEC) – II |    | -     |    |      |       |        |       |        |
| HSSMC4              | BTAIHM503A | 1. Economics and<br>Management                                                             | 3  |       | -  | 20   | 20    | 60     | 100   | 3      |
|                     | BTAIHM503B | 2. Business<br>Communication                                                               |    |       |    |      |       |        |       |        |
|                     | BTAIHM503C | 3. Knowledge<br>Reasoning and AI<br>Ethics.                                                |    |       |    |      |       |        |       |        |
| PEC-2               | BTAIPE504  | Professional Elective<br>Course (PEC) -II                                                  |    | 1     | -  | 20   | 20    | 60     | 100   | 4      |
|                     | BTAIPE504A | 1. Advanced Database<br>System                                                             | 3  |       |    |      |       |        |       |        |
|                     | BTAIPE504B | 2. Soft Computing                                                                          |    |       |    |      |       |        |       |        |
|                     | BTAIPE504C | 3. Sensors & Robotics<br>Technology                                                        |    |       |    |      |       |        |       |        |
|                     | BTAIPE504D | 4. Advanced Java                                                                           |    |       |    |      |       |        |       |        |
|                     | BTAIOE505  | Open Elective Course<br>(OEC) - I                                                          |    |       |    |      |       |        |       |        |
|                     | BTAIOE505A | 1. Data Mining and<br>Warehousing                                                          |    |       |    |      |       |        |       |        |
| OEC-1               | BTAIOE505B | 2. Digital<br>Communication &<br>Information Theory                                        | 3  | 1     | -  | 20   | 20 20 | 60     | 100   | 4      |
|                     | BTAIOE505C | 3. Software<br>Engineering and<br>Testing                                                  |    |       |    |      |       |        |       |        |
|                     | BTAIOE505D | 4. Virtual Reality                                                                         |    |       |    |      |       |        |       |        |
| LC3                 | BTAIL506   | Machine Learning Lab<br>and Competitive<br>Programming Lab                                 | -  | -     | 4  | 60   | -     | 40     | 100   | 2      |
| PROJ                | BTAIM507   | Mini Project I                                                                             | -  | -     | 4  | 60   | -     | 40     | 100   | 2      |
| Internship          | BTAIP408   | Field Training /<br>Internship / Industrial<br>Training – II(Evaluation)                   | -  | -     | -  | -    | -     | -      | -     | Audit  |
|                     |            |                                                                                            | 15 | 3     | 8  | 220  | 100   | 380    | 700   | 22     |

#### Course Structure for Third Year B. Tech in Artificial Intelligence & Data Science

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

|                  | Semester VI (Term 6) |                                                                                            |          |               |         |                          |     |     |       |                                                   |
|------------------|----------------------|--------------------------------------------------------------------------------------------|----------|---------------|---------|--------------------------|-----|-----|-------|---------------------------------------------------|
| Course<br>Catego | Course               | Course Title                                                                               | Te<br>Se | achiı<br>chem | ng<br>e | <b>Evaluation Scheme</b> |     |     |       |                                                   |
| ry               | Code                 |                                                                                            | L        | Τ             | P       | CA                       | MSE | ESE | Total | Credit                                            |
| PCC7             | BTAIC601             | Deep Learning                                                                              | 3        | 1             | -       | 20                       | 20  | 60  | 100   | 4                                                 |
| PCC8             | BTAIC602             | Advanced Machine Learning                                                                  | 3        | -             | -       | 20                       | 20  | 60  | 100   | 3                                                 |
|                  | BTAIPE603            | Professional Elective Course<br>(PEC) -III                                                 |          |               |         |                          |     |     |       |                                                   |
| PEC-3            | BTAIPE603A           | 1. Geographical Information<br>Systems                                                     | 3        | 1             | _       | 20                       | 20  | 60  | 100   | А                                                 |
| TEC-5            | BTAIPE603B           | 2. Recommender System                                                                      | 5        | 1             | -       | 20                       | 20  | 00  | 100   | +                                                 |
|                  | BTAIPE603C           | 3. Industry 4.0 & Automation                                                               |          |               |         |                          |     |     |       |                                                   |
|                  | BTAIPE603D           | 4. Web Development                                                                         |          |               |         |                          |     |     |       |                                                   |
| OEC-2            | BTAIOE604            | Open Elective Course (OEC) -<br>I                                                          |          | 1             |         |                          | 20  | 60  | 100   | 4                                                 |
|                  | BTAIOE604A           | 1. Big Data Analytics                                                                      | 3        |               |         |                          |     |     |       |                                                   |
|                  | BTAIOE604B           | 2. Cryptography & Network<br>Security                                                      |          |               | -       | 20                       |     |     |       |                                                   |
|                  | BTAIOE604C           | 3. Agile Methodology                                                                       |          |               |         |                          |     |     |       |                                                   |
|                  | BTAIOE604D           | 4. Augmented Reality                                                                       |          |               |         |                          |     |     |       |                                                   |
| USSME            | BTAIHM605            | Humanities and Social<br>Sciences including<br>Management Elective Course<br>(HSSMEC) – II |          | -             | -       | 20                       | 20  | 60  | 100   | 3                                                 |
| C-5              | BTAIHM605A           | 1. Development Engineering                                                                 | 3        |               |         |                          |     |     |       |                                                   |
|                  | BTAIHM605B           | 2. Employability and Skills<br>Development                                                 |          |               |         |                          |     |     |       |                                                   |
|                  | BTAIHM605C           | 3. Consumer Behavior                                                                       |          |               |         |                          |     |     |       |                                                   |
| LC4              | BTAIL606             | Deep Learning Lab and<br>Advanced Machine Learning<br>Lab                                  | -        | -             | 4       | 60                       | -   | 40  | 100   | 2                                                 |
| PROJ             | BTAIM607             | Mini Project II                                                                            | -        | -             | 4       | 60                       | -   | 40  | 100   | 2                                                 |
| Internsh<br>ip   | BTAIP608             | Field Training / Internship /<br>Industrial Training - III                                 | -        | -             | -       | -                        | -   | -   | -     | Audit to<br>be<br>evaluated<br>in VII<br>semester |
|                  |                      |                                                                                            | 15       | 3             | 8       | 220                      | 100 | 380 | 700   | 22                                                |

#### Course Structure for Third Year B. Tech in Artificial Intelligence & Data Science

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

#### Semester –VI Deep Learning

| BTAIC601 | Deep learning | PCC7 | 3L- 1T - 0P | 4 Credits |
|----------|---------------|------|-------------|-----------|

| Teaching Scheme      | Examination Scheme                             |
|----------------------|------------------------------------------------|
| Lecture: 3 hrs./week | Continuous Assessment : 20 Marks               |
| Tutorial: 1 hr./week | Mid Semester Exam: 20 Marks                    |
|                      | End Semester Exam: 60 Marks (Duration 03 hrs.) |

**Pre-Requisites:** Basic Knowledge of Machine learning, Soft Computing, Data Structures, Python.

#### **Course Objectives:**

In this course, attendees will:

- Understand the context of neural networks and deep learning
- Have a working knowledge of neural networks and deep learning
- Explore the parameters for neural networks
- Use CNN and RNN for solving real world problem.

#### Course Outcomes:

On completion of the course, students will be able to:

| CO1 | Implement deep learning models in Python using the Keras/PyTorch library and train  |
|-----|-------------------------------------------------------------------------------------|
|     | them with real-world datasets.                                                      |
| CO2 | Design convolution networks for image classification.                               |
| CO3 | Perform regularization, training optimization, and hyperparameter selection on deep |
|     | models.                                                                             |
| CO4 | Design Recurrent Neural Networks for text and sequence classification.              |
| CO5 | Apply Generative Deep Learning for Generating images                                |

#### Course Contents:

#### **Unit 1: Introduction to Neural Network**

#### [8 Hours]

Working Of Simple Artificial Neural Network, Multilayer Perceptron, Forward Propagation And Back Propagation Learning, Building Blocks of Deep Neural Networks, Optimization Techniques, Gradient Descent and its variants, Derivatives, Batch Optimization, Momentum Optimizer, RMSProp, Adam, Vectorization, Linear Regression and Logistic Regression with Deep Neural Network.

#### **Unit 2: Convolutional Neural Network**

Introduction Convolutional Neural Network, Fully Connected Network vs Convolutional Neural Network , Building Blocks Of CNN: Filters, Convolution, Pooling, Activations Etc. Training Procedure of CNN, Feeding Images And Videos to CNN, Different CNN Architectures, Residual Networks, Skip Connections.

#### **Unit 3: Transfer Learning and Effective training in Deep Net:**

**Transfer Learning:** Introduction To Transfer Learning, Need For Transfer Learning, Feature Extraction Using Transfer Learning, Fine Tuning.

**Effective Training:** Bias Variance Tradeoff, Dealing With Overfitting and Underfitting, Data Augmentation, Early Stopping, Dropout, Batch Normalization, Instance Normalization, Group Normalization, Regularization, Hyperparameter Tuning.

#### **Unit 4: Deep learning for text and Sequences**

Introduction To Sequential/Temporal Data, Sequential Models, Introduction to Recurrent Neural Network ,Working of RNN, Representing Sequential Data using RNN, Working With Text Data, Text Generation With LSTM, LSTM And GRU, Transformer Network.

#### **Unit 5: Generative Deep Learning**

Neural Stryle Transfer , Variational Autoencoder, Generative Adversarial Network , Classical Supervised Tasks With Deep Learning, Image Denoising, Semantic Segmentation, Object Detection Etc.

#### Text Books

- 1. Francois Challot, "Deep Learning with Python", second edition.
- 2. Francois Challot, "Deep Learning with Pytorch", second edition

#### Reference Books

- 1. 1 Michael Nielsen, Neural Networks and Deep Learning, 2016
- 2. Deep Learning- Ian Goodfelllow, Yoshua Benjio, Aaron Courville, The MIT Press
- 3. Pattern Classification- Richard O. Duda, Peter E. Hart, David G. Stork, John Wiley & Sons Inc.

## [7 Hours]

[7 Hours]

#### Semester –VI Advanced Machine Learning

| BTAIC602             | Advanced Machine Le | Advanced Machine Learning                      |  | 3L- 0T - 0P | 3 Credits |  |  |  |
|----------------------|---------------------|------------------------------------------------|--|-------------|-----------|--|--|--|
|                      |                     |                                                |  |             |           |  |  |  |
| Teaching Scheme      |                     | Examination Scheme                             |  |             |           |  |  |  |
| Lecture: 3 hrs./week |                     | Continuous Assessment : 20 Marks               |  |             |           |  |  |  |
|                      |                     | Mid Semester Exam: 20 Marks                    |  |             |           |  |  |  |
|                      |                     | End Semester Exam: 60 Marks (Duration 03 hrs.) |  |             |           |  |  |  |

**Pre-Requisites:** Machine Learning Basics, Python Programming Language.

#### Course Objectives:

After completion of the course, students will learn:-

- To understand fundamental concepts of unsupervised learning and its various algorithms
- To understand Association Rules Mining and Recommendation Systems
- To apply ML algorithms on given data and interpret the results obtained
- To design appropriate ML solution to solve real world problems in AI domain

#### Course Outcomes:

On completion of the course, students will be able to:

| CO1 | Develop a good understanding of fundamental of unsupervised learning. |
|-----|-----------------------------------------------------------------------|
| CO2 | Formulation of Association Rules Mining and Recommendation Systems    |
| CO3 | Interpret a model using Reinforcement Learning.                       |
| CO4 | Evaluate the time series data.                                        |
| CO5 | Design and Concrete implementations using boosting.                   |

#### Course Contents:

#### Unit No 1: Unsupervised Learning

#### [7 Hours]

#### **Unsupervised Learning - 1**

Introduction to Unsupervised Learning, Introduction to Clustering, Using K-means for Flat Clustering, KMeans Algorithm, Using KMeans from Sklearn, Implementing Fit & Predict Functions, Implementing K-Means Class

#### Unsupervised Learning - 2

How to choose Optimal K, Silhouette algorithm to choose K, Introduction to K Medoids, K Medoids Algorithm, Introduction to Hierarchical Clustering, Top down/Divisive Approach, Bottom up/Divisive Approach

#### Principal Component AnalysisPCA - 1

Intuition behind PCA, Applying PCA to 2D data, Applying PCA on 3D data, Math behind PCA, Finding Optimal Number of Features, Magic behind PCA, Dimensionality reduction **PCA - 2** 

PCA on Images, PCA on Olevitti Images, Reproducing Images, Eigenfaces, Classification of LFW Images

Unit No 2: Association Rules Mining and Recommendation Systems[7 Hours]What are Association Rules, Association Rule Parameters, Calculating Association RuleParameters, Recommendation Engines, Recommendation Engines working, CollaborativeFiltering ,Content Based Filtering.

#### Unit No 3: Reinforcement Learning

What is Reinforcement Learning, Why Reinforcement Learning, Elements of Reinforcement Learning, Exploration vs Exploitation dilemma, Epsilon Greedy Algorithm, Markov Decision Process (MDP), Q values and V values, Q – Learning,  $\square$  values.

#### Unit No 4: Time Series Analysis

Time Series Analysis ,Importance of TSA ,Components of TSA,White Noise, AR model, MA model,ARIMA model,Stationarity,ACF & PACF

#### **Unit No 5: Model Selection and Boosting**

Model Selection, Need of Model Selection, Cross – Validation, Boosting, Boosting Algorithms, Types of Boosting Algorithms, Adaptive Boosting.

#### Text Books:

1. Ethem Alpaydın, Introduction to Machine Learning, PHI, Third Edition, ISBN No. 978-81-203-5078-6

2. Christopher M. Bishop, Pattern Recognition and Machine Learning, Mcgraw-Hill, ISBN No. 0-07-115467-1

3. Tom Mitchell, Machine Learning, Mcgraw-Hill, First Edition, ISBN No. 0-07-115467-1.

4.Giuseppe Bonaccorso, "Machine Learning Algorithms", Packt Publishing Limited, ISBN10: 1785889621, ISBN-13: 978-1785889622

#### Reference Books:

1.R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2/e, Wiley, 2001

2. Shai shalev-Shwartz and Shai Ben-David, Understanding Machine Learning(From Theory to Algorithms), Cambridge University Press, First Edition, ISBN No. 978-1-107-51282-5.

3. A. Rostamizadeh, A. Talwalkar, M. Mohri, Foundations of Machine Learning, MIT Press.

4. A. Webb, Statistical Pattern Recognition, 3/e, Wiley, 2011.

#### [8 Hours]

### [7 Hours]

#### Semester -VI **Geographic Information System**

| BTAIPE603AGeographical Information SystemPE | <b>EC3</b> 3L-1T-0 | 4 Credits |
|---------------------------------------------|--------------------|-----------|
|---------------------------------------------|--------------------|-----------|

| Teaching Scheme       | Examination Scheme                             |
|-----------------------|------------------------------------------------|
| Lecture: 3 hrs./week  | Continuous Assessment : 20 Marks               |
| Tutorial : 1 hr./week | Mid Semester Exam: 20 Marks                    |
|                       | End Semester Exam: 60 Marks (Duration 03 hrs.) |

#### Pre-Requisites: Nil.

#### **Course Objectives:**

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

- 1. To understand the different components of GIS
- 2. To understand the different raster data file formats
- 3. To learn the Pre-processing of spatial datasets
- 4. To understand various GIS analysis

#### Course Outcomes:

On completion of the course, students will be able to:

| CO1 | Understand Geographic Information Systems                   |
|-----|-------------------------------------------------------------|
| CO2 | Analyze advantages and disadvantages associated with vector |
| CO3 | Identify Spatial interpolation techniques.                  |
| CO4 | Demonstrate GIS analysis-1.                                 |
| CO5 | Understand the applications Errors in GIS Key elements      |

#### Course Contents:

#### **Unit 1: Introduction**

What is Geographic Information Systems? Different components of GIS, Different types of vector data, Raster data models and their types TIN data model..

#### Unit 2: Non Special Data

Advantages and disadvantages associated with vector, raster and TIN Non-spatial data attributes and their type Raster data compression techniques Different raster data file formats spatial database systems and their types.

#### Unit 3: Pre-processing of spatial datasets

Pre-processing of spatial datasets Different map projections, Spatial interpolation techniques Different types of resolutions Digital Elevation Model (DEM).

#### Unit 4: Quality Assessment

Quality assessment of freely available DEMS GIS analysis-1

#### Unit 5: GIS Analysis

GIS analysis-2 and applications Errors in GIS Key elements of maps.

#### [7 Hours]

[7 Hours]

[8 Hours]

[7 Hours]

Note: Hands-on practice should cover under Tutorial slots.

#### **Text Books**

1. Ian Heywood, Sarah Cornelius and Steve Carver, An Introduction to Geographical Information Systems (4th Edition) 2012.

Reference Books

- 1. Chang Kang-tsung (Karl), Introduction to Geographic Information Systems, 2006
- 2. Tor Bernhardsen Geographic Information Systems: An Introduction, May 2002

#### Semester –VI Recommended Systems

|            | •                   |      |             |           |
|------------|---------------------|------|-------------|-----------|
| BTAIPE603B | Recommended Systems | PEC3 | 3L- 1T - 0P | 4 Credits |

| Teaching Scheme       | Examination Scheme                             |
|-----------------------|------------------------------------------------|
| Lecture: 3 hrs./week  | Continuous Assessment : 20 Marks               |
| Tutorial : 1 hr./week | Mid Semester Exam: 20 Marks                    |
|                       | End Semester Exam: 60 Marks (Duration 03 hrs.) |

**Pre-Requisites:** Basic Knowledge of Machine learning, Python.

#### **Course Objectives:**

Upon completion of this course, the student should be able to:

- 1. Understand basics concepts of Recommended System.
- 2. Apply various types of recommendation system.
- 3. Evaluate recommendation system.

#### Course Outcomes:

On completion of the course, students will be able to:

| CO1 | Understand the need and challenges of Recommended Systems. |
|-----|------------------------------------------------------------|
| CO2 | Apply Collaborative Filtering for recommendation.          |
| CO3 | Develop content based recommendation system.               |
| CO4 | Develop time location based recommendation system.         |
| CO5 | Evaluate recommended system using different metric.        |

#### Course Contents:

#### **Unit 1: Introduction to Recommended Systems**

#### [7 Hours]

Introduction ,Goals of Recommender Systems ,Basic Models/types of Recommender Systems, Challenges in Recommender Systems, The Cold-Start Problem in Recommender Systems ,Attack-Resistant Recommender Systems, Privacy in Recommender Systems.

Case study: Basic recommendation system using weighted average and popularity score.

#### Unit 2: Collaborative Filtering

Types of Collaborative Filtering: Neighborhood/memory based vs Model based. Neighborhood based Collaborative Filtering: User based Collaborative Filtering, Item based Collaborative Filtering, cold-start problem.

Model based Collaborative Filtering: Naive Bayes Collaborative Filtering, Matrix Factorization, Singular Value Decomposition, Association rule mining.

Case study: Book Recommendation using Collaborative Filtering

#### **Unit 3: Content-Based Recommender Systems**

Introduction, Basic Components of Content-Based Systems, Preprocessing and Feature Extraction, Learning User Profiles and Filtering, Content-Based Versus Collaborative Recommendations, High level architecture of content-based systems, Advantages and drawbacks of content based filtering, Item profiles, Discovering features of documents,

[8 Hours]

Obtaining item features from tags, Representing item profiles, Methods for learning user profiles, Similarity measures, ,Similarity based retrieval, Classification algorithms. Knowledge based recommendation: Knowledge representation and reasoning, Constraint based recommenders, Case based recommenders

Case Study: 1.Content Based Recommendation System

2. Movie recommendation system (using K nearest Neighbor K-nearest neighbor method, using Pearson Correlation etc).

#### Unit 4: Time- and Location-Sensitive Recommender Systems [7 Hours]

Introduction, Temporal Collaborative Filtering, Discrete Temporal Models, Location-Aware Recommender Systems, case study.

#### Unit 5: Evaluating Recommender Systems[7 Hours]

Introduction, Evaluation Paradigms, General Goals of Evaluation Design, Design Issues in Offline Recommender Evaluation, Accuracy Metrics in Offline Evaluation, Limitations of Evaluation Measures.

Note: Hands-on practice of Recommender System should cover under Tutorial slots. Text Books

- 1. Jannach D., Zanker M. and FelFering A., Recommender Systems: An Introduction, Cambridge University Press(2011), 1st ed.
- Aggarwal, C. C. "Recommender Systems: The Textbook". Springer 2016. ISBN 978-3-319-29657-9

#### Reference Books

1.Deepak K. Agarwal, Bee-Chung Chen, ,Statistical Methods for Recommender Systems, Cambridge University Press(2016).

#### Semester –VI Industry 4.0 and Automation

|  | BTAIPE603CIndustry 4.0 and AutomationPEC33L-1T-0P4 Credits |  |
|--|------------------------------------------------------------|--|
|--|------------------------------------------------------------|--|

| Teaching Scheme       | Examination Scheme                             |
|-----------------------|------------------------------------------------|
| Lecture: 3 hrs./week  | Continuous Assessment : 20 Marks               |
| Tutorial : 1 hr./week | Mid Semester Exam: 20 Marks                    |
|                       | End Semester Exam: 60 Marks (Duration 03 hrs.) |

#### **Pre-Requisites:**

- 1. Basics of Control Systems
- 2. Foundation of sensors and actuators
- 3. Fundamentals of Power Devices and Circuits

#### **Course Objectives:**

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

- 1. Globalization and emerging issues of Industry 4.0
- 2. Internet of Things and Robotics as Pillars of Industry 4.0
- 3. Process control and Automation
- 4. Understand architecture of PLC, SCADA and DCS and their Importance in Industrial Automation

#### Course Outcomes:

On completion of the course, students will be able to:

| CO1 | Define essential elements of Industry 4.0                       |
|-----|-----------------------------------------------------------------|
| CO2 | Describe architecture of Industrial IoT                         |
| CO3 | Explain Recent Technological Components of Robots               |
| CO4 | Understand and Recognize Industrial needs of Automation         |
| CO5 | Identify and interpret the functionality of PLC, SCADA and DCS. |

Course Contents:

#### **Unit No 1: Introduction:**

# Introduction, core idea of Industry 4.0, Globalization and Emerging Issues, The Fourth Revolution, Smart and Connected Business Perspective, Smart Factories, Technology Roadmap of for Industry 4.0, A brief overview of pillars of Industry 4.0: Internet of Things, Cloud Computing, Cybersecurity, Big Data and Analytics, Additive Manufacturing, Virtual/Augmented Reality, and Robotics.

#### **Unit No 2: Internet of Things in Industry 4.0**

Introduction to Internet of things (IoT) and Industrial Internet of Things (IIoT), IIoT Business Model and Reference Architecture, IIOT Layers: Sensing, Processing, Communication, and Analytics. Software Defined Networks.

#### [8 Hours]

#### Unit No 3: Robotics in Industry 4.0

Introduction, Recent Technological Components of Robots- Advanced Sensor Technologies, Internet of Robotic Things, Cloud Robotics, and Cognitive Architecture for Cyber-Physical Robotics, Industrial Robotic Applications- Manufacturing, Maintenance and Assembly.

#### **Unit No 4: Introduction to Automation**

Process control principles, Control System Evaluation, Analog control, Digital control, Architecture of Industrial Automation Systems(Automation Pyramid), Advantages and limitations of Automation, Concept and Need of transmitters, Standardization of signals, Current, Voltage and Pneumatic signal standards, 2-Wire & 3-Wire transmitters, Concept of VFD, Energy conservation schemes through VFD.

#### Unit No 5: PLC, SCADA and DCS

Introduction to Programmable Logic Controllers (PLC), Generalized Block Diagram, and Essential components of PLC, Typical Specifications of PLC. Concept of SCADA, Architecture of SCADA, Components of SCADA Systems, human-machine interface (HMI) Basic Concept of DCS, History and Hierarchy of DCS, Basic Components of DCS as Operator Station, Control Module, and I/O module , Types of DCS, Comparison of PLC, DCS and SCADA

Note: Consider practical approach of Robotics under Practical slots. Text Books

1. Alp Ustundag, Emre Cevikacan, Industry 4.0 : Managing the Digital Transformation, Springer

2. Curtis Johnson, "Process Control Instrumentation Technology", 8th Edition, Pearson Education.

3. Madhuchhanda Mitra, Samarjit Sen Gupta, "Programmable Logic controllers and Industrial Automation", Penram International Publishing India Pvt. Ltd

#### Reference Books

- 1. Kilian, "Modern control technology: components & systems", Delmar 2nd edition.
- 2. R.G. Jamkar, "Industrial Automation Using PLC SCADA & DCS" Global Education Limited
- 3. S. Misra, C. Roy, and A. Mukherjee, 2020. Introduction to Industrial Internet of Things and Industry 4.0. CRC Pres

#### [7 Hours]

#### [7 Hours]

#### Semester –VI Web Development

| BTAIPE603D | Web Development | PEC3 | 3L- 1T - 0P | 4 Credits |
|------------|-----------------|------|-------------|-----------|
|            |                 |      |             |           |

| Teaching Scheme       | Examination Scheme                             |
|-----------------------|------------------------------------------------|
| Lecture: 3 hrs./week  | Continuous Assessment : 20 Marks               |
| Tutorial : 1 hr./week | Mid Semester Exam: 20 Marks                    |
|                       | End Semester Exam: 60 Marks (Duration 03 hrs.) |

#### Pre-Requisites: None

#### **Course Objectives:**

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

- 1. Fundamentals of web essentials and markup languages
- 2.Use of the Client-side technologies in web development
- 3.Use of the Server-side technologies in web development
- 4. Understand the web services and frameworks

#### Course Outcomes:

On completion of the course, students will be able to:

| CO1 | Implement and analyze behavior of web pages using HTML and CSS |
|-----|----------------------------------------------------------------|
| CO2 | Apply the client-side technologies for web development         |
| CO3 | Analyze the concepts of Servlet and JSP                        |
| CO4 | Analyze the Web services and frameworks                        |
| CO5 | Apply the server side technologies for web development         |

#### Course Contents:

#### **Unit No 1: Introduction to Web Essentials**

# The internet, basic internet protocols, the world wide web, HTTP Request message, HTTP response message, web clients, web servers. **HTML**: Introduction, history and versions. **HTML Elements**: heading, paragraphs, line break, colors and fonts, links, frames, list, tables, images and forms. Difference between HTML and HTML5. **CSS**: Introduction to style sheet, CSS features, CSS core syntax, Style sheets and HTML, Style rule cascading and inheritance, text properties. Bootstrap

#### Unit No 2: Client-Side Technologies: JavaScript and DOM [7 Hours]

JavaScript: Introduction to JavaScript, JavaScript in perspective, basic syntax, variables and data types, statements, operators, literals, functions, objects, arrays, built in objects, JavaScript debuggers. DOM: Introduction to Document Object Model, DOM history and levels, intrinsic event handling, modifying element style, the document tree, DOM event handling, jQuery, Overview of Angular JS.

#### Unit No 3: Java Servlets and XML

Servlet: Servlet architecture overview, A "Hello World" servlet, Servlet generating dynamic content, Servlet life cycle, parameter data, sessions, cookies, URL rewriting, other Servlet capabilities, data storage, Servlets concurrency, databases (MySQL) and Java Servlets. XML: XML documents and vocabularies, XML declaration, XML Namespaces, DOM based XML processing, transforming XML documents, DTD: Schema, elements, attributes. AJAX: Introduction, Working of AJAX.

#### Unit No 4: JSP and Web Services

JSP: Introduction to Java Server Pages, JSP and Servlets, running JSP applications, Basic JSP, JavaBeans classes and JSP, Support for the Model-View-Controller paradigm, JSP related technologies. Web Services: Web Service concepts, writing a Java Web Service, Writing a Java web service client, Describing Web Services: WSDL, Communicating Object data: SOAP. Struts: Overview, architecture, configuration, actions, interceptors, result types, validations, localization, exception handling, annotations.

#### **Unit No 5: Server Side Scripting Languages**

PHP: Introduction to PHP, uses of PHP, general syntactic characteristics, Primitives, operations and expressions, output, control statements, arrays, functions, pattern matching, form handling, files, cookies, session tracking, using MySQL with PHP, WAP and WML. Introduction to ASP.NET: Overview of the .NET Framework, Overview of C#, Introduction to ASP.NET, ASP.NET Controls, Web Services. Overview of Node JS.

Note: Hands-on practice of Web Development should cover under Tutorial slots.

#### **Text Books**

- Jeffrey C. Jackson, "Web Technologies: A Computer Science Perspective", Second Edition, Pearson Education, 2007, ISBN 978-0131856035
- 2. Robert W Sebesta, "Programming the World Wide Web , 4th Edition, Pearson education, 2008
- 3. Marty Hall, Larry, "Core Web Programming", Second Edition, Pearson Education, 2001, ISBN 978-0130897930.

#### Reference Books

- 1. H.M. Deitel, P.J. Deitel and A.B. Goldberg, "Internet & World Wide Web How To Program", Third Edition, Pearson Education, 2006, ISBN 978-0131752429.
- 2. Chris Bates, "Web Programming Building Internet Applications , 3rd Edition, Wiley India, 2006.
- 3. Xue Bai et al, "The web Warrior Guide to Web Programming, Thomson, 2003.

#### [7 Hours]

[8 Hours]

#### Semester –VI Big Data Analytics

| BTAIOE604A    | Big Data Analytic | s OEC2            | 3L- 1T - 0P | 4 Credits |
|---------------|-------------------|-------------------|-------------|-----------|
|               |                   |                   |             |           |
| Teeshine Cale |                   | Engeningtion Cale |             |           |

| Teaching Scheme       | Examination Scheme                             |
|-----------------------|------------------------------------------------|
| Lecture: 3 hrs./week  | Continuous Assessment : 20 Marks               |
| Tutorial : 1 hr./week | Mid Semester Exam: 20 Marks                    |
|                       | End Semester Exam: 60 Marks (Duration 03 hrs.) |

**Pre-Requisites:** Should have knowledge of one Programming Language (Java preferably), Practice of SQL (queries and sub queries), exposure to Linux Environment

#### **Course Objectives:**

Upon completion of this course, the student should be able to

- 1. Understand the Big Data Platform and its Use cases
- 2. Provide an overview of Apache Hadoop
- 3. Provide HDFS Concepts and Interfacing with HDFS
- 4. Understand Map Reduce Jobs
- 5. Provide hands on Hodoop Eco System
- 6. Apply analytics on Structured, Unstructured Data.

#### Course Outcomes:

On completion of the course, students will be able to:

| CO1 | Identify Big Data and its Business Implications.    |
|-----|-----------------------------------------------------|
| CO2 | List the components of Hadoop and Hadoop Eco-System |
| CO3 | Access and Process Data on Distributed File System  |
| CO4 | Develop Big Data Solutions using Hadoop Eco System  |
| CO5 | Use Big data Framework, security and governance.    |

#### Course Contents:

#### **Unit No 1: Introduction to Big Data and Hadoop**

Types of Digital Data, Introduction to Big Data, Big Data Analytics, History of Hadoop, Apache Hadoop, Analyzing Data with UNIX tools, Analyzing Data with Hadoop, Hadoop Streaming, Hadoop Echo System, IBM Big Data Strategy, Introduction to Infosphere BigInsights and Big Sheets.

#### Unit No 2: HDFS (Hadoop Distributed File System):

The Design of HDFS, HDFS Concepts, Command Line Interface, Hadoop file system interfaces, Data flow, Data Ingest with Flume and Scoop and Hadoop archives, Hadoop I/O: Compression, Serialization, Avro and File-Based Data structures.

#### Unit No 3: Map Reduce:

Anatomy of a Map Reduce Job Run, Failures, Job Scheduling, Shuffle and Sort, Task Execution, Map Reduce Types and Formats, Map Reduce Features, Hadoop cluster.

#### [7 Hours]

#### [7 Hours]

#### Unit No 4: Hadoop Eco System:

Pig : Introduction to PIG, Execution Modes of Pig, Comparison of Pig with Databases, Grunt, Pig Latin, User Defined Functions, Data Processing operators.
Hive : Hive Shell, Hive Services, Hive Metastore, Comparison with Traditional Databases,
HiveQL, Tables, Querying Data and User Defined Functions.
Hbase : HBasics, Concepts, Clients, Example, Hbase Versus RDBMS.
Big SQL : Introduction

#### Unit No 5: Big Data Framework and security:

Apache kafka: Feature, concept, architecture, components Apache Spark: Feature, concept, architecture, components. Kerberos authentication: Feature, concept, architecture, components

Note: Hands-on practice of to deploy Big Data systems should cover under Tutorial slots. Text Books

- 1. Tom White "Hadoop: The Definitive Guide" Third Edit on, O'reily Media, 2012.
- 2. Seema Acharya, Subhasini Chellappan, "Big Data Analytics" Wiley 2015.

#### Reference Books

- 1. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.
- 2. Jay Liebowitz, "Big Data and Business Analytics" Auerbach Publications, CRC press (2013)
- 3. Tom Plunkett, Mark Hornick, "Using R to Unlock the Value of Big Data: Big Data Analytics with Oracle R Enterprise and Oracle R Connector for Hadoop", McGraw-Hill/Osborne Media (2013), Oracle press.
- 4. Anand Rajaraman and Jef rey David Ulman, "Mining of Massive Datasets", Cambridge University Press, 2012.
- 5. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley & sons, 2012.
- 6. Glen J. Myat, "Making Sense of Data", John Wiley & Sons, 2007
- 7. Pete Warden, "Big Data Glossary", O'Reily, 2011.
- 8. Michael Mineli, Michele Chambers, Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses", Wiley Publications, 2013.

#### [8 Hours]

#### Semester –VI Cryptography & Network Security

| BTAIOE604BCryptography & Network SecurityOEC23L-1T-0P4 Credits |  |
|----------------------------------------------------------------|--|
|----------------------------------------------------------------|--|

| Teaching Scheme       | Examination Scheme                             |
|-----------------------|------------------------------------------------|
| Lecture: 3 hrs./week  | Continuous Assessment : 20 Marks               |
| Tutorial : 1 hr./week | Mid Semester Exam: 20 Marks                    |
|                       | End Semester Exam: 60 Marks (Duration 03 hrs.) |

#### Pre-Requisites: None

#### **Course Objectives:**

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

- 1. The objectives of information security
- 2. Explain the importance and application of each of confidentiality, integrity, authentication and availability
- 3. Understand various cryptographic algorithms.
- 4. Understand the basic categories of threats to computers and networks
- 5. Describe public-key cryptosystem.
- 6. Describe the enhancements made to IPv4 by IPSec
- 7. Understand Intrusions and intrusion detection
- 8. Discuss the fundamental ideas of public-key cryptography.
- 9. Generate and distribute a PGP key pair and use the PGP package to send an encrypted email message.
- 10. Discuss Web security and Firewalls

#### Course Outcomes:

On completion of the course, students will be able to:

| CO1 | Understand basic cryptographic algorithms, message and web authentication and security  |
|-----|-----------------------------------------------------------------------------------------|
|     | issues.                                                                                 |
| CO2 | Ability to identify information system requirements for both of them such as client and |
|     | server.                                                                                 |
| CO3 | Ability to understand the current legal issues towards information security.            |
|     |                                                                                         |
| CO4 | Develop transport level security.                                                       |
| CO5 | Apply knowledge for develop model.                                                      |
|     |                                                                                         |

#### **Unit No 1: Security Concepts:**

Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security Cryptography Concepts and Techniques: Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks.

#### Unit No 2: Symmetric key Ciphers:

Block Cipher principles, DES, AES, Blowfish, RC5, IDEA, Block cipher operation, Stream ciphers, RC4. Asymmetric key Ciphers: Principles of public key cryptosystems, RSA algorithm, Elgamal Cryptography, Diffie-Hellman Key Exchange, Knapsack Algorithm.

# **Unit No 3: Cryptographic Hash Functions, key management and distribution:** [8 Hours] Cryptographic Hash Functions: Message Authentication, Secure Hash Algorithm (SHA-512),

Message authentication codes: Authentication requirements, HMAC, CMAC, Digital signatures, Elgamal Digital Signature Scheme.

Key Management and Distribution: Symmetric Key Distribution Using Symmetric & Asymmetric, Encryption, Distribution of Public Keys, Kerberos, X.509 Authentication Service, Public – Key Infrastructure.

#### Unit No 4: Transport-level Security:

Web security considerations, Secure Socket Layer and Transport Layer Security, HTTPS, Secure Shell (SSH)

Wireless Network Security: Wireless Security, Mobile Device Security, IEEE 802.11 Wireless LAN, IEEE 802.11i Wireless LAN Security.

#### Unit No 5: Case Study:

E-Mail Security: Pretty Good Privacy, S/MIME IP Security: IP Security overview, IP Security architecture, Authentication Header, Encapsulating security payload, Combining security associations, Internet Key Exchange

Case Studies on Cryptography and security: Secure Multiparty Calculation, Virtual Elections, Single sign On, Secure Inter-branch Payment Transactions, Cross site Scripting Vulnerability

Note: Hands-on practice should cover under Practical slots.

#### **Text Book:**

- 1. Cryptography and Network Security Principles and Practice: William Stallings, Pearson Education, 6th Edition
- 2. Cryptography and Network Security: Atul Kahate, Mc Graw Hill, 3rd Edition

#### Reference Books:

1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition.

- 2. Cryptography and Network Security: Forouzan Mukhopadhyay, Mc Graw Hill, 3rd Edition
- 3. Information Security, Principles, and Practice: Mark Stamp, Wiley India.
- 4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH
- 5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning
- 6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning

# [7 Hours]

#### Semester -VI **Agile Methodology**

| BTAIOE604C | Agile Methodology | OEC2 | 3L- 1T - 0P | 4 Credits |
|------------|-------------------|------|-------------|-----------|
|            |                   |      |             |           |

| Teaching Scheme       | Examination Scheme                             |
|-----------------------|------------------------------------------------|
| Lecture: 3 hrs./week  | Continuous Assessment : 20 Marks               |
| Tutorial : 1 hr./week | Mid Semester Exam: 20 Marks                    |
|                       | End Semester Exam: 60 Marks (Duration 03 hrs.) |

#### Pre-Requisites: None

#### **Course Objectives:**

After completion of the course, students will learn:-

- To provide students with a theoretical as well as practical understanding of agile software development practices and how small teams can apply them to create highquality software.
- To provide a good understanding of software design and a set of software technologies and APIs.
- To do a detailed examination and demonstration of agile development and testing techniques.
- To understand the benefits and pitfalls of working in an agile team.
- To understand agile development and testing.

#### Course Outcomes:

On completion of the course, students will be able to:

| CO1 | Realize the importance of interacting with business stakeholders in determining the requirements for a software system                            |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Perform iterative software development processes: how to plan them, how to execute them.                                                          |
| CO3 | Point out the impact of social aspects on software development success.                                                                           |
| CO4 | Develop techniques and tools for improving team collaboration and software quality.                                                               |
| CO5 | Perform Software process improvement as an ongoing task for development teams and show agile approaches can be scaled up to the enterprise level. |

#### *Course Contents:*

#### **Unit No 1: AGILE METHODOLOGY**

[7 Hours] Theories for Agile Management - Agile Software Development - Traditional Model vs. Agile Model - Classification of Agile Methods - Agile Manifesto and Principles - Agile Project Management – Agile Team Interactions – Ethics in Agile Teams - Agility in Design, Testing - Agile Documentations - Agile Drivers, Capabilities and Values.

#### Unit No 2: AGILE PROCESSES

Lean Production - SCRUM, Crystal, Feature Driven Development- Adaptive Software Development - Extreme Programming: Method Overview - Lifecycle - Work Products, Roles and Practices.

#### Unit No 3: AGILITY AND KNOWLEDGE MANAGEMENT

Agile Information Systems – Agile Decision Making - Earl\_S Schools of KM – Institutional Knowledge Evolution Cycle - Development, Acquisition, Refinement, Distribution, Deployment, Leveraging - KM in Software Engineering - Managing Software Knowledge -Challenges of Migrating to Agile Methodologies - Agile Knowledge Sharing - Role of Story-Cards - Story-Card Maturity Model (SMM).

#### Unit No 4: AGILITY AND REQUIREMENTS ENGINEERING

Impact of Agile Processes in RE-Current Agile Practices - Variance - Overview of RE Using Agile – Managing Unstable Requirements – Requirements Elicitation – Agile Requirements Abstraction Model – Requirements Management in Agile Environment, Agile Requirements Prioritization - Agile Requirements Modeling and Generation - Concurrency in Agile Requirements Generation.

#### Unit No 5: AGILITY AND OUALITY ASSURANCE

#### Agile Product Development – Agile Metrics – Feature Driven Development (FDD) – Financial and Production Metrics in FDD - Agile Approach to Quality Assurance - Test Driven Development - Agile Approach in Global Software Development.

#### Text Books

1. David J. Anderson and Eli Schragenheim, —Agile Management for Software Engineering: Applying the Theory of Constraints for Business Results, Prentice Hall, 2003.

2. Hazza and Dubinsky, —Agile Software Engineering, Series: Undergraduate Topics in Computer Sciencel, Springer, 2009.

#### Reference Books

1. Craig Larman, -Agile and Iterative Development: A Manager s Guidel, Addison-Wesley, 2004.

2. Kevin C. Desouza, -Agile Information Systems: Conceptualization, Construction, and Management<sup>I</sup>, Butterworth-Heinemann, 2007.

#### [8 Hours]

# [7 Hours]

#### [7 Hours]

#### Semester –VI Augmented Reality

| BTAIOE604C            | Augmented Reality                                     |                             | OEC2     | 3L- 1T - 0P    | 4 Credits       |  |
|-----------------------|-------------------------------------------------------|-----------------------------|----------|----------------|-----------------|--|
|                       |                                                       |                             |          |                |                 |  |
| <b>Teaching Schem</b> | e I                                                   | Examination Scheme          |          |                |                 |  |
| Lecture: 3 hrs./we    | Lecture: 3 hrs./week Continuous Assessment : 20 Marks |                             |          | 5              |                 |  |
| Tutorial : 1 hr./we   | ek N                                                  | Mid Semester Exam: 20 Marks |          |                |                 |  |
|                       |                                                       | nd Semest                   | ter Exam | : 60 Marks (Du | ration 03 hrs.) |  |

#### Pre-Requisites: None

#### **Course Objectives:**

The objective of this course is to provide a foundation to the fast growing field of AR and make the students aware of the various AR devices

#### Course Outcomes:

On completion of the course, students will be able to:

| CO1 | Describe how AR systems work and list the applications of AR.               |
|-----|-----------------------------------------------------------------------------|
| CO2 | Understand and analyse the hardware requirement of AR.                      |
| CO3 | Use computer vision concepts for AR and describe AR techniques.             |
| CO4 | Analyse and understand the working of various state of the art AR devices . |
| CO5 | Acquire knowledge of mixed reality.                                         |

#### Course Contents:

#### Unit No 1: Introduction to Augmented Reality:

#### [7 Hours]

[7 Hours]

What Is Augmented Reality - Defining augmented reality, history of augmented reality, The Relationship Between Augmented Reality and Other Technologies-Media, Technologies, Other Ideas Related to the Spectrum Between Real and Virtual Worlds, applications of augmented reality

Augmented Reality Concepts- Augmented Reality Working, Concepts Related to Augmented Reality, Ingredients of an Augmented Reality Experience.

#### Unit No 2: Augmented Reality Hardware:

# Augmented Reality Hardware – Displays – Audio Displays, Haptic Displays, Visual Displays, Other sensory displays, Visual Perception, Requirements and Characteristics, Spatial Display Model.

Processors – Role of Processors, Processor System Architecture, Processor Specifications. Tracking & Sensors - Tracking, Calibration, and Registration, Characteristics of Tracking Technology, Stationary Tracking Systems, Mobile Sensors, Optical Tracking, Sensor Fusion.

Unit No 3: Computer Vision for Augmented Reality & A.R. Software:[7 Hours]Computer Vision for Augmented Reality - Marker Tracking, Multiple-Camera InfraredTracking, Natural Feature Tracking by Detection, Simultaneous Localization and Mapping,Outdoor Tracking

Augmented Reality Software - Introduction, Major Software Components for Augmented Reality Systems, Software used to Create Content for the Augmented Reality Application.

#### Unit No 4: AR Techniques- Marker based & Markerless tracking: [8 Hours]

Marker-based approach- Introduction to marker-based tracking, types of markers, marker camera pose and identification, visual tracking, mathematical representation of matrix multiplication Marker types- Template markers, 2D barcode markers, imperceptible markers.

Marker-less approach- Localization based augmentation, real world examples

Tracking methods- Visual tracking, feature based tracking, hybrid tracking, and initialization and recovery.

#### Unit No 5: AR Devices & Components:

[7 Hours]

AR Components – Scene Generator, Tracking system, monitoring system, display, Game scene AR Devices – Optical See- Through HMD, Virtual retinal systems, Monitor bases systems, Projection displays, Video see-through systems.

Note: Hands-on practice of Augmented Reality should cover under Tutorial slots.

#### **Text Books**

- Allan Fowler-AR Game Developmentl, 1st Edition, A press Publications, 2018, ISBN 978-1484236178
- Augmented Reality: Principles & Practice by Schmalstieg / Hollerer, Pearson Education India; First edition (12 October 2016),ISBN-10: 9332578494.

#### Reference Books

- Designing for Mixed Reality, Kharis O'Connell Published by O'Reilly Media, Inc., 2016, ISBN: 9781491962381
- Sanni Siltanen- Theory and applications of marker-based augmented reality. Julkaisija Utgivare Publisher. 2012. ISBN 978-951-38-7449-0
- 3. https://www.vttresearch.com/sites/default/files/pdf/science/2012/S3.pdf
- 4. https://docs.microsoft.com/en-us/windows/mixed-reality/
- 5. <u>https://docs.microsoft.com/en-us/archive/msdn-magazine/2016/november/hololens</u> <u>introduction-to-the-hololens</u>

#### Semester –VI Development Engineering

| BTAIHM605A           | A Development Engineering |                             | HSSMEC5                          | 3L- 0T - 0P | 3 Credits |  |
|----------------------|---------------------------|-----------------------------|----------------------------------|-------------|-----------|--|
|                      |                           |                             |                                  |             |           |  |
| Teaching Scheme      |                           |                             | Examination Scheme               |             |           |  |
| Lecture: 3 hrs./week |                           |                             | Continuous Assessment : 20 Marks |             |           |  |
|                      |                           | Mid Semester Exam: 20 Marks |                                  |             |           |  |

End Semester Exam: 60 Marks (Duration 03 hrs.)

#### Pre-Requisites: None

#### **Course Objectives:**

After completion of the course, students will learn:-

#### Course Outcomes:

On completion of the course, students will be able to:

| CO1 | Improve the skills of development engineering                |
|-----|--------------------------------------------------------------|
| CO2 | Get the knowledge of world poverty and development           |
| CO3 | Aware about social justice                                   |
| CO4 | Apply development strategies                                 |
| CO5 | Understand engineering for sustainable community development |

#### Course Contents:

#### **Unit No 1: Introduction**

Introduction, Various Definitions of Development Engineering.

#### **Unit No 2: World Poverty and Development**

World Poverty and Development, Poverty in the India, Sustainable Development, Culture and Global Competence, The Engineer's Role.

#### Unit No 3: Social Justice

Social Justice, Social Justice and Engineering, Religious Perspectives, Secular Perspectives.

#### **Unit No 4: Development Strategies**

Development Strategies: Society, Technological Change, and Development, Development Economists' Perspectives, Global Health Perspective, International Education Perspective, Social Business Perspectives.

#### Unit No 5: Engineering for Sustainable Community Development [7 H

The Engineer as a Helper Participatory Community Development, Teamwork and Project Management, Community Assessment: Learning About a Community, Project Selection, Humanitarian Technology, Participatory Technology Development, Humanitarian STEM Education. ICT for Development, AI for Humanitarian purposes, Blockchain and Social Development.

#### Text Books

1. Kevin M. Passino, Humanitarian Engineering: Advancing Technology for Sustainable Development

#### [8 Hours]

[7 Hours]

#### [7 Hours]

## [7 Hours]

#### Semester –VI Employability and Skill Development

| BTAIHM605B | Employability and Skill | HSSMEC5 | 3L- 0T - 0P | 3 Credits |
|------------|-------------------------|---------|-------------|-----------|
|            | Development             |         |             |           |

| Teaching Scheme      | Examination Scheme                             |
|----------------------|------------------------------------------------|
| Lecture: 3 hrs./week | Continuous Assessment : 20 Marks               |
|                      | Mid Semester Exam: 20 Marks                    |
|                      | End Semester Exam: 60 Marks (Duration 03 hrs.) |

#### Pre-Requisites: None

#### **Course Objectives:**

After completion of the course, students will learn:-

#### Course Outcomes:

On completion of the course, students will be able to:

| CO1 | Improve the soft skills and communication.                                 |
|-----|----------------------------------------------------------------------------|
| CO2 | Empower Arithmetic and Mathematical Reasoning and Analytical Reasoning and |
|     | Quantitative Ability                                                       |
| CO3 | Use of grammar.                                                            |
| CO4 | Development in interview skills.                                           |
| CO5 | Develop problem solving techniques.                                        |

#### Course Contents:

#### Unit No 1: Soft Skills & Communication basics:

#### [7 Hours]

[7 Hours]

Soft skills Vs hard skills, Skills to master, Interdisciplinary relevance, Global and national perspectives on soft skills, Resume, Curriculum vitae, How to develop an impressive resume, Different formats of resume Chronological, Functional, Hybrid, Job application or cover letter, Professional presentation- planning, preparing and delivering presentation, Technical writing.

# Unit No 2:Arithmetic and Mathematical Reasoning and Analytical Reasoning andQuantitative Ability[8 Hours]

Aspects of intelligence, Bloom taxonomy, multiple intelligence theory, Number sequence test, mental arithmetic (square and square root, LCM and HCF, speed calculation, reminder theorem).

Matching, Selection, Arrangement, Verifications (Exercises on each of these types). Verbal aptitude (Synonym, Antonym, Analogy).

#### **Unit No 3: Grammar and Comprehension**

#### English sentences and phrases, Analysis of complex sentences, Transformation of sentences, Paragraph writing, Story writing, Reproduction of a story, Letter writing, précis writing, Paraphrasing and e-mail writing.

#### Unit No 4: Skills for interviews

Interviews- types of interviews, preparatory steps for job interviews, interview skill tips, Group discussion- importance of group discussion, types of group discussion, difference between group discussion, panel discussion and debate, personality traits evaluated in group discussions, tips for successful participation in group discussion, Listening skills- virtues of listening, fundamentals of good listening, Non-verbal communication-body movement, physical appearance, verbal sounds, closeness, time.

#### **Unit No 5: Problem Solving Techniques**

Problem solving model: 1. Define the problem, 2. Gather information, 3. Identify various solution, 4. Evaluate alternatives, 5. Take actions, 6. Evaluate the actions.Problem solving skills: 1. Communicate. 2. Brain storming, 3. Learn from mistakes.

#### Text Books

1. R. Gajendra Singh Chauhan, Sangeeta Sharma, -Soft Skills- An integrated approach to maximize personality||, ISBN: 987-81-265-5639-7, First Edition 2016

#### Reference Books

- 1. Wiley Wren and Martin, "English grammar and Composition", S. Chand publications.
- 2. R. S. Aggarwal, "A modern approach to verbal reasoning", S. Chand publications.
- 3. Philip Carter, "The Complete Book of Intelligence Test", John Willey & Sons Ltd.
- 4. Philip Carter, Ken Russell, "Succeed at IQ test", Kogan Page.
- 5. Eugene Ehrlich, Daniel Murphy, "Schaum;s Outline of English Grammar", McGraw Hills.
- 6. David F. Beer, David A. McMurrey, -A Guide to Writing as an Engineer<sup>∥</sup>, ISBN: 978- 1-118- 30027-5 4th Edition, 2014, Wiley.

#### [7 Hours]

#### Semester –VI Consumer Behavior

| BTAIHM605C      | Consumer Behavior | HSSMEC5          | 3L- 0T - 0P | 3 Credits |
|-----------------|-------------------|------------------|-------------|-----------|
|                 |                   |                  |             |           |
| Teaching Scheme |                   | Examination Sche | me          |           |
|                 |                   | a                |             |           |

| Lecture: 3 hrs./week | Continuous Assessment : 20 Marks               |
|----------------------|------------------------------------------------|
|                      | Mid Semester Exam: 20 Marks                    |
|                      | End Semester Exam: 60 Marks (Duration 03 hrs.) |

#### Pre-Requisites: None

#### **Course Objectives:**

After completion of the course, students will learn:-

#### Course Outcomes:

On completion of the course, students will be able to:

| CO1 | Study of Consumer Behavior                                   |
|-----|--------------------------------------------------------------|
| CO2 | Get Market Segmentation and Positioning                      |
| CO3 | Develop Models of Consumer Behavior                          |
| CO4 | Analyze Psychological Influences on Consumer Decision Making |
| CO5 | Study Diffusion of innovation Diffusion Process              |

#### Course Contents:

#### Unit No 1: Introduction to the Study of Consumer Behavior: [7 Hours]

Defining Consumer Behavior, Scope and Application of Consumer Behavior, Why Study Consumer Behavior, Evolution of Consumer Behavior as a Field Of Study and its relationship with Marketing: Behavioral Dimension, The Interdisciplinary Nature of Consumer Behavior. Market Research and Consumer Behavior, Relevance of Market Research with Consumer Behavior, Approaches to Consumer Behavior Research, Quantitative Research, Qualitative Research.

#### Unit No 2: Market Segmentation and Positioning

Market Segmentation, Basis for Segmentation, Alternatives available for Segmentation, Positioning. The Consumer Decision Making Process: Buying Motives, Buying Roles, Consumer Decision Making Process, Levels of Consumer Decision Making, Perspectives to Consumer Decision Making, Consumer Decision Making Process.

#### Unit No 3: Models of Consumer Behavior

The Economic model, Learning model, Psychoanalytic model, The sociological model. The Howard Sheth model of Buying Behaviour, The Nicosia model, The Engel - Kollat - Blackwell Model, Engel, Blackwell and Miniard (EBM) model.

#### [7 Hours]

[8 Hours]

# Unit No 4: Psychological Influences on Consumer Decision Making[7 Hours]Consumers Needs & Motivation, Emotions and Mood, Consumer Involvement, Consumer<br/>Learning, Personality, Self-concept and Self-image, Consumer Perception, Risk and Imagery.<br/>Consumer Attitude: Belief, Affect, Attitude and Intention, Attitude Formation and Attitude<br/>Change, Consumer Communication. Sociological Influences on Consumer Decision Making:<br/>Consumer groups, Consumer reference groups, Family and Life cycle, Social class and<br/>mobility, lifestyle analysis, Culture; Sub-Culture, Cross Culture, Interpersonal Communication<br/>and influence, Opinion Leadership.

#### Unit No 5: Diffusion of innovation Diffusion Process [7 Hours]

Adoption Process, Consumer Innovators, Multiplicative innovation adoption (MIA) model. Organizational Buying: Differences between Industrial Markets and Consumer Markets, Differences between Organizational and Consumer Buying, Buying Decisions in Organizational Buying Process, Types of Decision Making, Organization Buyer's Decision Making Process, and Factors influencing Organizational Buying Behaviour, Decision Makers in Organizational Buying, Webster and Wind model of Organizational buying behaviour, The Sheth model of Industrial buying, The Sheth model of Industrial buying Consumer Behavior Analysis and Marketing Strategy: Consumer Behavior and Product Strategy, Consumer Behavior and Pricing Strategy, Consumer Behavior and Distribution Channel Strategy, Consumer Behavior and Promotion Strategy.

#### Text Books

1. Consumer Behavior, Schiffman, L.G. and Kanuk L.L., Prentice Hall, India.

#### Reference Books

- 1. Consumer Behavior, Concepts and Applications, Loudon, D.L. and Bitta, A.J.D, TatacGrawHill.
- 2. Consumer Behavior and Marketing Startegy, Peter, J.P. and Olson, J.C., Schiffman, L.G. and Kanuk L.L., Prentice Hall, India.

#### Semester –VI Deep Learning and Advanced Machine Learning Lab

| BTAIL606 | Deep Learning and Advanced | LC4 | 0L-0T-4P | 2 Credits |
|----------|----------------------------|-----|----------|-----------|
|          | Machine Learning Lab       |     |          |           |

| Teaching Scheme         | Examination Scheme                 |
|-------------------------|------------------------------------|
| Practical: 04 hrs./week | Continuous Assessment 1: 30 Marks  |
|                         | Continuous Assessment 2: 30 Marks  |
|                         | End Semester Examination: 40 Marks |

#### **Deep Learning Lab**

#### **Practical List**

- 1. Loading dataset into keras/pytorch, creating training and testing splits.
- 2. Creating functions to compute various losses.
- 3. Feeding data to pretrained neural network and making predictions.
- 4. Implementing regression using deep neural network.
- 5. Classifying IMDB movie review dataset using deep neural network-binary classification problem.
- 6. Classifying Reuters dataset using deep neural network-multiclass classification problem.
- 7. Classifying MNIST Dataset using CNN.
- 8. Classifying data using pretrained models/transfer learning.
- 9. Training various popular neural networks (Resnet, VGGNet,InceptionV3 etc) on custom Dataset.
- 10. Tempreture forecasting using RNN.
- 11. Implementation of GAN on any suitable dataset.

#### **Advanced Machine Learning Lab**

- 1. Implementing K-means Clustering.
- 2. Implementing Hierarchical Clustering.
- 3. Implementation of Apriori Algorithm.
- 4. Implementation of Market Basket Analysis.
- 5. Reinforcement Learning
  - a. Calculating Reward
  - b. Discounted Reward
  - c. Calculating Optimal quantities
  - d. Implementing Q Learning
  - e. Setting up an Optimal Action
- 6. Time Series Analysis
  - a. Checking Stationary
  - b. Converting a non-stationary data to stationary
  - c. Implementing Dickey Fuller Test
  - d. Plot ACF and PACF
  - e. Generating the ARIMA plot
  - f. TSA Forecasting
- 7. Boosting
  - a. Cross Validation
  - b. AdaBoost

#### Semester –VI Mini Project -II

| BIAINI60/ MINI PROJECT-II Project 0L-01-4P 2 Credit | BTAIM607 | MINI PROJECT-II | Project | 0L-0T-4P | 2 Credits |
|-----------------------------------------------------|----------|-----------------|---------|----------|-----------|
|-----------------------------------------------------|----------|-----------------|---------|----------|-----------|

#### **Guidelines for Mini Project**

The students shall study in group of two members (or individual) on some special topic beyond the scope of the syllabus under the subjects of Artificial Intelligence, Data Science, Electronics Engineering and Computer Science Engineering or inter discipline branch from current literature, by referring the current technical journal or reference books, under the guidance of the teacher.

In this subject head, it is expected that the student should complete the following tasks.

- 1. Identify problem statement / idea which is solving one problem preferably local problem may bein their University / College / nearby vicinity.
- 2. Do the literature survey,
- 3. Design the solutions
- 4. Implement solution using latest technology
- 5. Write 20-25 pages report (use of latex is more suitable).
- 6. Present / demonstrate the solution in front of faculty member

The students shall prepare his report and execution of project for other students of his class in the presence of his guide and examiner. The student is permitted to use audio-visual aids or any other such teaching aids.

#### Continues Assessment:

The Continues Assessment for this head will consists of the report written in a technical reporting manner and execution of project will be assessed by the internal examiner appointed by the HOD of concern department of the institution.

#### Semester –VI Internship - III

| BTAIP608 | Field Training / Internship / Industrial | Internship | Audit |
|----------|------------------------------------------|------------|-------|
|          | Training                                 |            |       |

#### **Guidelines for Internships**

Guidelines for Field Training / Internship / Industrial Training Industrial Training:

- 1. To apply for a suitable Industrial Training, submit an application form to respective Organization concerned one semester before the Industrial Training Programmed commences.
- 2. Student can also apply through online platforms such as Internshala for industrial training.
- 3. Submit one copy of the offer letter for the Industrial Training to the Head of the department or Faculty coordinator (Industrial Training).
- 4. To complete the Industrial Training process within the specified time based on the Industrial Training Programme schedule.
- 5. Assessment within the Industrial Training context aims to evaluate the student's work quality and appropriateness to the field of study with reference to the learning outcomes of the Industrial Training Programme.
- 6. Evaluation of the students' performance should be done in the next upcoming semester.
- 7. Those students who fails, they can also complete online certification courses which are available at free of cost on various MOOC platforms.

| Sr<br>N<br>o | Name of<br>Subject as<br>per<br>Curriculum    | Course Code | Semeste<br>r | SWAYAM/ NPTEL Course And Web Link                                                                                                                                                                              | Name of<br>Institute<br>offering<br>course | Relev<br>ance<br>% | Duratio<br>n of<br>Course |
|--------------|-----------------------------------------------|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------|---------------------------|
| 1            | Computer<br>Network and<br>Cloud<br>Computing | BTAIC501    | V            | Cloud computing<br><u>https://onlinecourses.nptel.ac.in/noc22_cs87/previe</u><br><u>W</u><br>Computer Networks and Internet Protocol<br><u>https://onlinecourses.nptel.ac.in/noc22_cs19/previe</u><br><u>W</u> | IIT<br>Kharagp<br>ur                       | 60<br>%            | 12<br>weeks               |
| 2            | Machine<br>Learning                           | BTAIC502    | V            | Introduction to machine learning<br>https://onlinecourses.nptel.ac.in/noc22_cs97/previe<br>w                                                                                                                   | IIT<br>Kharagp<br>ur                       | 80<br>%            | 8 weeks                   |
|              | Knowledge<br>reasoning and<br>AI ethics       | BTAIHM503   | V            | Artificial intelligence: knowledge representation<br>and reasoning<br>https://nptel.ac.in/courses/106106140                                                                                                    | IIT<br>Madras                              | 60<br>%            | 12<br>weeks               |
| 4            | Virtual<br>Reality                            | BTAIPE504A  | v            | Virtual reality engineering<br>https://nptel.ac.in/courses/121106013                                                                                                                                           | IIT<br>Madras                              | 70<br>%            | 12Week<br>s               |
| 5            | Soft                                          |             | V            | Introduction to soft computing<br>https://onlinecourses.nptel.ac.in/noc22_cs54/previe<br>w                                                                                                                     | IIT<br>Kharagp<br>ur                       | 40<br>%            | 8<br>Weeks                |
| 6            | computing                                     | BTAIPE504B  | v            | Neural networks and applications<br>https://archive.nptel.ac.in/courses/117/105/1171050<br>84/                                                                                                                 | IIT<br>Kharagp<br>ur                       | 40<br>%            | 37<br>lectures            |
| 7            | Sensors and<br>Robotics<br>Technology         | BTAIPE504C  | V            | Introduction to robotics<br>https://onlinecourses.nptel.ac.in/noc22_de11/previe<br>w<br>Introduction to robotics<br>https://archive.nptel.ac.in/courses/107/106/1071060<br>90/                                 | IIT<br>Madras                              | 70<br>%            | 12<br>weeks               |
| 8            | Advanced<br>Java                              | BTAIPE504D  | V            | Programming in Java<br>https://onlinecourses.nptel.ac.in/noc22_cs47/previe<br>w                                                                                                                                | IIT<br>Kharagp<br>ur                       | 50<br>%            | 12<br>weeks               |
| 9            | Data mining<br>and                            | BTAIOE505A  | V            | Data mining<br>https://onlinecourses.swayam2.ac.in/cec19_cs01/pre<br>view<br>Data mining                                                                                                                       | ШТ                                         | 60<br>%            | 12<br>weeks               |
| 10           | warehousing                                   |             |              | https://onlinecourses.nptel.ac.in/noc21_cs06/previe<br>w                                                                                                                                                       | Kharagp<br>ur                              | 40<br>%            | 8 weeks                   |
| 11           | Digital<br>communicati<br>on and              | BTAIOE505B  | V            | An introduction to coding theory<br><u>https://onlinecourses.nptel.ac.in/noc22_ee108/previ</u><br><u>ew</u>                                                                                                    | IIT<br>Kanpur                              | 80<br>%            | 12<br>weeks               |
| 12           | theory                                        |             |              | Principles of Digital communication<br><u>https://nptel.ac.in/courses/108101113</u><br>Software engineering                                                                                                    | IIT<br>Bombay<br>IIT                       | 90<br>%            | 12<br>weeks               |
| 13           |                                               |             |              | https://onlinecourses.nptel.ac.in/noc22_cs106/previ<br>ew                                                                                                                                                      | Kharagp<br>ur                              | 60<br>%            | 12<br>weeks               |
| 14           | Software<br>engineering<br>and testing        | BTAIOE505C  | v            | Software testing<br><u>https://onlinecourses.nptel.ac.in/noc19_cs71/previe</u><br><u>w</u>                                                                                                                     | IIT<br>Bangalor<br>e                       | 60<br>%            | 12<br>weeks               |
| 15           |                                               |             |              | Software testing<br>https://onlinecourses.nptel.ac.in/noc20_cs19/previe<br>w                                                                                                                                   | IIT<br>Kharagp<br>ur                       | 40<br>%            | 4 weeks                   |
| 16           | Deer leering                                  |             | VI           | Deep learning<br>https://onlinecourses.nptel.ac.in/noc20_cs62/previe<br>w                                                                                                                                      | IIT<br>Kharagp<br>ur                       | 80<br>%            | 12 week                   |
| 17           | Deep learning                                 | DIAIC001    |              | Deep learning<br>https://onlinecourses.nptel.ac.in/noc22_cs124/previ<br>ew                                                                                                                                     | IIT<br>Ropar                               | 70<br>%            | 12<br>weeks               |
| 18           | Advanced<br>Machine<br>Learning               | BTAIC602    | VI           | Machine learning for engineering and science<br>application<br>https://onlinecourses.nptel.ac.in/noc19_cs82/previe<br>w                                                                                        | IIT<br>Madras                              | 50<br>%            | 12<br>Weeks               |
| 19           | Augmented reality                             | BTAIPE603A  | VI           | -                                                                                                                                                                                                              |                                            |                    |                           |
| 20           | Recommende<br>r system                        | BTAIPE603B  | VI           | -                                                                                                                                                                                                              |                                            |                    |                           |

#### COURSE CURRICULUM MAPPING WITH MOOC PLATFORM NPTEL

| 21 | Industry 4.0<br>& automation                | BTAIPE603<br>C | VI | Introduction to industry 4.0 and industrial internet<br>of things<br>https://onlinecourses.nptel.ac.in/noc22_cs95/previe<br>w                                                               | IIT<br>Kharagp<br>ur             | 50<br>% | 12<br>weeks |
|----|---------------------------------------------|----------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------|-------------|
| 22 | Web<br>Development                          | BTAIPE603<br>D | VI | Modern application development<br>https://nptel.ac.in/courses/106106156                                                                                                                     | IIT<br>Madras                    | 40<br>% | 8 weeks     |
| 23 | Big Data<br>Analytics                       | BTAIOE604<br>A | VI | -                                                                                                                                                                                           |                                  |         |             |
| 24 | Cryptography<br>and network<br>security     | BTAIOE604<br>B | VI | Cryptography and network security<br>https://onlinecourses.nptel.ac.in/noc22_cs90/previe<br>w                                                                                               | IIT<br>Kharagp<br>ur             | 60<br>% | 12<br>weeks |
| 25 | Agile<br>Methodology                        | BTAIOE604<br>C | VI | -                                                                                                                                                                                           |                                  |         |             |
| 26 | Development<br>Engineering                  | BTAIHM605<br>A | VI | Developing soft skill and personality<br>https://archive.nptel.ac.in/courses/109/104/1091041<br>07/<br>Educational leadership<br>https://archive.nptel.ac.in/courses/109/105/1091051<br>22/ | IIT<br>Kharagp<br>ur &<br>Kanpur | 40<br>% | 8 weeks     |
| 27 | Employabilit<br>y and Skills<br>Development | BTAIHM605<br>B | VI | Soft skills<br>https://onlinecourses.nptel.ac.in/noc21_hs76/previe<br>w                                                                                                                     | IIT<br>Roorkee                   | 70<br>% | 12<br>weeks |
| 28 | Consumer<br>Behavior                        | BTAIHM605<br>C | VI | Introduction to consumer behavior<br>https://nptel.ac.in/courses/110105029                                                                                                                  | IIT<br>Kharagp<br>ur             | 50<br>% | 8 weeks     |
| 29 | Economics<br>and<br>management              | BTAIHM605<br>D | VI | Economics / Management / Entrepreneurship<br>https://nptel.ac.in/courses/110105067                                                                                                          | IIT<br>Kharagp<br>ur             | 60<br>% | 12<br>weeks |

#### COURSE CURRICULUM MAPPING WITH MOOC PLATFORM COURSERA

| Sr.<br>No | Name of<br>Subject<br>as per<br>Curriculu<br>m | Cours<br>e Code | Semes<br>ter | Coursera Course And Web Link                                                                                                                                                           | Name of<br>Institute<br>offering<br>course | Relev<br>ance<br>% | Durati<br>on of<br>Cours<br>e |
|-----------|------------------------------------------------|-----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------|-------------------------------|
| 1         | Computer<br>Network and<br>Cloud<br>Computing  | BTAIC5<br>01    | V            | The Bits and Bytes of Computer<br>Networking<br><u>https://www.coursera.org/learn/computer-</u><br><u>networking</u>                                                                   | Google Career<br>Certificate               | 80%                | 6 Weeks                       |
| 2         |                                                |                 |              | Introduction to Cloud Computing<br>https://www.coursera.org/learn/introduction<br>-to-cloud                                                                                            | IBM Cloud                                  | 75%                | 5 Weeks                       |
| 3         | Machine<br>Learning                            | BTAIC5<br>02    | V            | Machine Learning for All<br>https://www.coursera.org/learn/uol-<br>machine-learning-for-all                                                                                            | University of<br>London                    | 90%                | 4 Weeks                       |
| 4         | Knowledge<br>reasoning<br>and AI ethics        | BTAIH<br>M503   | V            | Artificial Intelligence Ethics in Action<br>https://www.coursera.org/learn/ai-ethics-<br>analysis                                                                                      | LearnQuest                                 | 75%                | 3 Weeks                       |
| 5         | Virtual<br>Reality                             | BTAIPE<br>504A  | v            | Intro to AR/VR/MR/XR: Technologies,<br>Applications & Issues<br>https://www.coursera.org/learn/intro-<br>augmented-virtual-mixed-extended-reality-<br>technologies-applications-issues | University of<br>Michigan                  | 78%                | 4 Weeks                       |
| 6         | Soft<br>computing                              | BTAIPE<br>504B  | V            | Neural Networks and Deep Learning<br>https://www.coursera.org/learn/neural-<br>networks-deep-learning                                                                                  | DeepLearning.A<br>I                        | 65%                | 4 Weeks                       |
| 7         | Sensors and<br>Robotics<br>Technology          | BTAIPE<br>504C  | V            | AI For Everyone<br>https://www.coursera.org/learn/ai-for-<br>everyone                                                                                                                  | DeepLearning.A<br>I                        | 65%                | 4 Weeks                       |

| 8  | Advanced<br>Java                                                                      | BTAIPE<br>504D | V  | Object Oriented Programming in Java<br>https://www.coursera.org/learn/object-<br>oriented-java                                                            | UC San Diego                                                | 75% | 6<br>Weeks |
|----|---------------------------------------------------------------------------------------|----------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----|------------|
| 9  | Data mining<br>and<br>warehousing                                                     | BTAIOE<br>505A | V  | Data Mining Pipeline<br>https://www.coursera.org/learn/data-mining-<br>pipeline                                                                           | University of<br>Colorado<br>Boulder                        | 85% | 4 Weeks    |
| 10 |                                                                                       |                |    | Fundamentals of Data Warehousing<br>https://www.coursera.org/learn/fundamental<br>s-of-data-warehousing                                                   | LearnQuest                                                  | 80% | 3 Weeks    |
| 11 | Digital<br>communicati<br>on and<br>information<br>theory                             | BTAIOE<br>505B | V  | Fundamentals of Network Communication<br>https://www.coursera.org/learn/fundamental<br>s-network-communications                                           | University of<br>Colorado                                   | 76% | 5<br>Weeks |
| 12 |                                                                                       |                |    | Cryptography and Information Theory<br>https://www.coursera.org/learn/crypto-info-<br>theory                                                              | University of<br>Colorado                                   | 80% | 4 Weeks    |
| 13 | Software<br>engineering<br>and testing                                                | BTAIOE<br>505C | V  | Software Engineering: Implementation and<br>Testing<br>https://www.coursera.org/learn/software-<br>engineering-implementation-and-testing                 | The Hong Kong<br>University of<br>Science and<br>Technology | 90% | 7 Weeks    |
| 14 | Deep<br>learning                                                                      | BTAIC6<br>01   | VI | Neural Networks and Deep Learning<br>https://www.coursera.org/learn/neural-<br>networks-deep-learning                                                     | DeepLearning.A<br>I                                         | 80% | 4 Weeks    |
| 15 | Advanced<br>Machine<br>Learning                                                       | BTAIC6<br>02   | VI | Advanced Machine Learning and Signal<br>Processing<br>https://www.coursera.org/learn/advanced-<br>machine-learning-signal-processing                      | IBM Skills<br>Network                                       | 80% | 4 Weeks    |
| 16 | Augmented reality                                                                     | BTAIPE<br>603A | VI | Introduction to Augmented Reality and<br>ARCore<br>https://www.coursera.org/learn/ar                                                                      | Daydream                                                    | 85% | 4 Weeks    |
| 17 | Recommend<br>er system                                                                | BTAIPE603<br>B | VI | Basic Recommender Systems     EIT Digital <u>https://www.coursera.org/learn/basic-</u> EIT Digital                                                        |                                                             | 70% | 4 Weeks    |
| 18 | Industry 4.0<br>&<br>automation                                                       | BTAIPE<br>603C | VI | Industrial Internet of Things (IIoT)<br>https://www.coursera.org/learn/industrial-<br>internet-of-things                                                  | s (IIoT)<br>am/industrial-<br>Michigan                      |     | 4 Weeks    |
| 19 | Web<br>Development                                                                    | BTAIPE<br>603D | VI | Web Application Development: Basic<br>Concepts<br>https://www.coursera.org/learn/web-app                                                                  | University of<br>New Mexico                                 | 80% | 5 Weeks    |
| 20 | Big Data<br>Analytics                                                                 | BTAIOE<br>604A | VI | Fundamentals of Software Architecture for<br>Big Data<br><u>https://www.coursera.org/learn/software-</u><br><u>architecture-for-big-data-fundamentals</u> | University of<br>Colorado<br>Boulder                        | 75% | 4 Weeks    |
| 21 | Cryptograph<br>y and<br>network<br>security                                           | BTAIOE<br>604B | VI | Cryptography and Hashing Overview<br>https://www.coursera.org/learn/crypto-<br>hashing                                                                    | University of<br>California,<br>Irvine                      | 75% | 4 Weeks    |
| 22 | Agile<br>Methodology                                                                  | BTAIOE<br>604C | VI | Combining Scrum with Other Agile<br>Methodologies<br><u>https://www.coursera.org/learn/combining-</u><br><u>scrum-with-other-methodologies</u>            | LearnQuest                                                  | 85% | 2<br>Weeks |
| 23 | Humanities<br>and Social<br>Sciences<br>including<br>Management<br>Elective<br>Course | BTAIH<br>M605  | VI | People and Soft Skills Assessment<br>https://www.coursera.org/learn/people-soft-<br>skills-assessment                                                     | IBM                                                         | 65% | 1 Week     |

|    | (HSSMEC)<br>– II                            |                |    |                                                                                                                                               |                                                          |     |            |
|----|---------------------------------------------|----------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----|------------|
| 24 | Development<br>Engineering                  | BTAIH<br>M605A | VI | Developing a Systems Mindset<br>https://www.coursera.org/learn/systems-<br>mindset                                                            | University of<br>Colorado<br>Boulder                     | 60% | 3<br>Weeks |
| 25 | Employabilit<br>y and Skills<br>Development | BTAIH<br>M605B | VI | Learning How to Learn: Powerful mental<br>tools to help you master tough subjects<br>https://www.coursera.org/learn/learning-<br>how-to-learn | Deep Teaching<br>Solutions                               | 65% | 4<br>Weeks |
| 26 | Consumer<br>Behavior                        | BTAIH<br>M605C | VI | Market Research and Consumer Behavior<br>https://www.coursera.org/learn/market-<br>research                                                   | IE Business<br>School                                    | 70% | 4<br>Weeks |
| 27 | Economics<br>and<br>management              | BTAIH<br>M605D | VI | The Strategist's Challenge<br>https://www.coursera.org/learn/strategists-<br>challenge                                                        | University of<br>Virginia Darden<br>School<br>Foundation | 75% | 4<br>Weeks |

#### COURSE CURRICULUM MAPPING WITH MOOC PLATFORM Edx

| Sr.<br>No | Name of Subject as<br>per Curriculum                                 | Course<br>Code         | Se<br>me<br>ster | Edx Course And Web Link                                                                                                                                                                 | Name of<br>Institute<br>offering<br>course | Relev<br>ance<br>% | Durati<br>on of<br>Cours<br>e |
|-----------|----------------------------------------------------------------------|------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------|-------------------------------|
| 1         | Computer Network and<br>Cloud Computing                              | BTAIC5<br>01           | V                | Cloud computing<br>https://onlinecourses.nptel.ac.in/noc22<br>_cs87/preview<br>11Computer Networks and Internet<br>Protocol<br>https://onlinecourses.nptel.ac.in/noc22<br>_cs19/preview | IIT Kharagpur                              | 40%                | 12<br>weeks                   |
| 2         | Machine Learning                                                     | BTAIC5<br>02           | v                | Introduction to machine learning<br>https://onlinecourses.nptel.ac.in/noc22<br>_cs97/preview                                                                                            | IIT Kharagpur                              | 80%                | 8 weeks                       |
|           | AI ethics                                                            | BTAIH<br>M503          | V                | Artificial intelligence: knowledge<br>representation and reasoning<br>https://nptel.ac.in/courses/106106140                                                                             | IIT Madras                                 | 60%                | 12<br>weeks                   |
|           | Virtual Reality                                                      | BTAIPE<br>504A         | v                | Virtual reality engineering<br>https://nptel.ac.in/courses/121106013                                                                                                                    | IIT Madras                                 | 70%                | 12Weeks                       |
| 3         | Soft computing                                                       | BTAIPE<br>504B         | V                | Introduction to soft computing<br>https://onlinecourses.nptel.ac.in/noc22<br>_cs54/preview                                                                                              | IIT Kharagpur                              | 40%                | 8 Weeks                       |
| 4         | Data Analysis                                                        | BTAI4<br>01            | IV               | Neural networks and applications<br>https://archive.nptel.ac.in/courses/117/<br>105/117105084/                                                                                          | IIT Kharagpur                              | 40%                | 37<br>lectures                |
| 5         | Sensors and Robotics<br>Technology                                   | BTAIPE<br>504C         | v                | Introduction to robotics<br>https://onlinecourses.nptel.ac.in/noc22<br>_del1/preview<br>Introduction to robotics<br>https://archive.nptel.ac.in/courses/107/<br>106/107106090/          | IIT Madras                                 | 70%                | 12<br>weeks                   |
| 6         | Advanced Java                                                        | BTAIPE<br>504D         | v                | Programming in Java<br>https://onlinecourses.nptel.ac.in/noc22<br>_cs47/preview                                                                                                         | IIT Kharagpur                              | 50%                | 12<br>weeks                   |
| 7         | Data mining and warehousing                                          | BTAIOE<br>505A         | v                | Data mining<br>https://onlinecourses.swayam2.ac.in/c<br>ec19_cs01/preview                                                                                                               |                                            | 60%                | 12<br>weeks                   |
| 8         | Internet of Things &<br>Embedded System<br>Digital communication and | BTSE4<br>05B<br>BTAIOE | IV<br>V          | Data mining<br><u>https://onlinecourses.nptel.ac.in/noc21</u><br><u>_cs06/preview</u>                                                                                                   | IIT Kharagpur                              | 40%                | 8 weeks                       |
|           | information theory                                                   | 505B                   |                  | https://onlinecourses.nptel.ac.in/noc22<br>ee108/preview_                                                                                                                               | IIT Kanpur                                 | 80%                | 12<br>weeks                   |

|    | Programming in JAVA                                                                                             | BTSE4<br>05D                                       | IV             | Principles of Digital communication<br>https://nptel.ac.in/courses/108101113                                                                                                                | IIT<br>Bombay             | 90% | 12<br>weeks |
|----|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|-------------|
| 9  | Software engineering and testing                                                                                | BTAIOE<br>505C                                     | V              | Software engineering<br>https://onlinecourses.nptel.ac.in/noc22<br>_cs106/preview                                                                                                           | IIT Kharagpur             | 60% | 12<br>weeks |
|    | Programming in<br>JAVA                                                                                          | BTSE4<br>05D                                       | IV             | Software testing<br>https://onlinecourses.nptel.ac.in/noc19<br>_cs71/preview                                                                                                                | IIT Bangalore             | 60% | 12<br>weeks |
| 10 | Computer Network and<br>Cloud Computing                                                                         | BTAIC501                                           | V              | Software testing<br>https://onlinecourses.nptel.ac.in/noc20<br>_cs19/preview                                                                                                                | IIT Kharagpur             | 40% | 4 weeks     |
| 11 | Deep learning                                                                                                   | BTAIC601                                           | VI             | Deep learning<br>https://onlinecourses.nptel.ac.in/noc20<br>_cs62/preview                                                                                                                   | IIT Kharagpur             | 80% | 12 week     |
| 12 | Knowledge reasoning and<br>AI ethics                                                                            | BTAIHM50<br>3                                      | V              | Deep learning<br>https://onlinecourses.nptel.ac.in/noc22<br>_cs124/preview                                                                                                                  | IIT Ropar                 | 70% | 12<br>weeks |
| 13 | Advanced Machine<br>Learning                                                                                    | BTAIC602                                           | VI             | Machine learning for engineering<br>and science application<br>https://onlinecourses.nptel.ac.in/noc19<br>_cs82/preview                                                                     | IIT Madras                | 50% | 12<br>Weeks |
| 14 | Augmented reality<br>Recommender system                                                                         | BTAIPE603<br>A<br>BTAIPE603<br>B                   | VI<br>VI       | -                                                                                                                                                                                           |                           |     |             |
|    |                                                                                                                 |                                                    |                | -                                                                                                                                                                                           |                           |     |             |
| 15 | Industry 4.0 & automation                                                                                       | BTAIPE603<br>C                                     | VI             | Introduction to industry 4.0 and<br>industrial internet of things<br>https://onlinecourses.nptel.ac.in/noc22<br>_cs95/preview                                                               | IIT Kharagpur             | 50% | 12<br>weeks |
| 16 | Web Development                                                                                                 | BTAIPE603<br>D                                     | VI             | Modern application development<br>https://nptel.ac.in/courses/106106156                                                                                                                     | IIT Madras                | 40% | 8 weeks     |
| 17 | Cryptography and network security                                                                               | BTAIOE604<br>A<br>BTAIOE604<br>B                   | VI<br>VI       | -                                                                                                                                                                                           |                           |     |             |
|    |                                                                                                                 |                                                    |                | Cryptography and network security<br>https://onlinecourses.nptel.ac.in/noc22<br>_cs90/preview                                                                                               | IIT Kharagpur             | 60% | 12<br>weeks |
| 18 | Agile Methodology<br>Humanities and Social<br>Sciences including<br>Management Elective<br>Course (HSSMEC) – II | BTAIOE604<br>C<br>BTAIHM60<br>5                    | VI<br>VI       | -                                                                                                                                                                                           |                           |     |             |
|    |                                                                                                                 |                                                    |                | Developing soft skill and personality<br>https://archive.nptel.ac.in/courses/109/<br>104/109104107/<br>Educational leadership<br>https://archive.nptel.ac.in/courses/109/<br>105/109105122/ | IIT Kharagpur<br>& Kanpur | 40% | 8 weeks     |
| 17 | Development Engineering<br>Employability and Skills<br>Development<br>Consumer Behavior                         | BTAIHM60<br>5A<br>BTAIHM60<br>5B<br>BTAIHM60<br>5C | VI<br>VI<br>VI | -                                                                                                                                                                                           |                           |     |             |
|    |                                                                                                                 |                                                    |                | Soft skills<br>https://onlinecourses.nptel.ac.in/noc21<br>_hs76/preview                                                                                                                     | IIT Roorkee               | 70% | 12<br>weeks |
|    |                                                                                                                 |                                                    |                | Introduction to consumer behavior<br>https://nptel.ac.in/courses/110105029                                                                                                                  | IIT Kharagpur             | 50% | 8 weeks     |
| 18 | Economics and<br>management                                                                                     | BTAIHM60<br>5D                                     | VI             | Economics / Management /<br>Entrepreneurship<br>https://nptel.ac.in/courses/110105067                                                                                                       | IIT Kharagpur             | 60% | 12<br>weeks |